当前位置:文档之家› 拉氏变换

拉氏变换

拉氏变换
拉氏变换

控制原理补充讲义——拉氏变换

拉氏变换是控制工程中的一个基本数学方法,其优点是能将时间函数的导数经拉氏变换后,变成复变量S的乘积,将时间表示的微分方程,变成以S表示的代数方程。

一、拉氏变换与拉氏及变换的定义

1、拉氏变换:设有时间函数,其中,则f(t)的拉氏变换记作:

称L—拉氏变换符号;s-复变量; F(s)—为f(t)的拉氏变换函数,称为象函数。f(t)—原函数拉氏变换存在,f(t)必须满足两个条件(狄里赫利条件):

1)在任何一有限区间内,f(t)分断连续,只有有限个间断点。2)当时,

,M,a为实常数。

2、拉氏反变换:将象函数F(s)变换成与之相对应的原函数f(t)的过程。

—拉氏反变换符号

关于拉氏及变换的计算方法,常用的有:①查拉氏变换表;②部分分式展开法。

二、典型时间函数的拉氏变换

在控制系统分析中,对系统进行分析所需的输入信号常可化简成一个或几个简单的信号,这些信号可用一些典型时间函数来表示,本节要介绍一些典型函数的拉氏变换。

注意:六大性质一定要记住

1.单位阶跃函数

2.单位脉冲函数

3.单位斜坡函数

4.指数函数

5.正弦函数sinwt

由欧拉公式:

所以,

6.余弦函数coswt

其它的可见下表:拉氏变换对照表

三、拉氏变换的性质

1、线性性质

若有常数k

1,k

2

,函数f

1

(t),f

2

(t),且f

1

(t),f

2

(t)的拉氏变换为F

1

(s),F

2

(s),

则有:,此式可由定义证明。

2、位移定理

(1)实数域的位移定理

若f(t)的拉氏变换为F(s),则对任一正实数a有

,

其中,当t<0时,f(t)=0,f(t-a)表示f(t)延迟时间a.

证明:,

令t-a=τ,则有上式=

例:求其拉氏变换

(2)复数域的位移定理

若f(t)的拉氏变换为F(s),对于任一常数a,有证:

例:求的拉氏变换

3、微分定理

设f(t)的拉氏变换为F(s),则

其中f(0+)是由正向使的f(t)值。

证:

同理可推广到n阶:

当初始条件为0时,即

则有

4、积分定理

设f(t)的拉氏变换为F(s),则,

其中时的值。

证明:

同理可得n阶积分的拉氏变换:

当初始条件为0时,f(t)的各重积分在时,均为0,则有

5、初值定理

设f(t)的拉氏变换为F(s),则函数f(t)的初值定理表示为:

证明:由微分定理知:

对等式两边取极限:则有

例:已知,求f(0+)

由初值定理知:

6、终值定理:

若f(t)的拉氏变换为F(s),则终值定理表示为:

证明:由微分定理知:

令,对上式两边取极限,

这个定理在稳态误差中常用。

例:已知:,求f()

7、卷积定理

设f(t)的拉氏变换为F(s),g(t)的拉氏变换为G(s),

则有

式中,称为f(t)与g(t)的卷积。此定理不要求证明。课堂练习:

1) 求L[t2]

2)求图示正弦波半波函数的拉氏变换

3)已知f(t)的拉氏变换为F(s),求

4)已知f(t)的拉氏变换为F(s),求L[f(at)]

四、拉氏反变换的数学方法

在已知象函数F(s),求f(t)时,对于简单的象函数,可直接利用表2-1来查,但对于复杂的,可利用部分分式展开法,即通过代数运算将一个复杂的象函数化为数个简单的部分分式之和,再求出各个分式的原函数,从而求出总的原函数。

部分分式展开法:

对于象函数F(s),常可写成如下形式:

式中,p1,p2…,pn称为F(s)的极点,p1,p2…,pn称为F(s)的零点。一般A(s)的阶次大于B(s),若B(s)>A(s),可化为多项式+真分式的形式。

下面分两种情况,研究分式展开法。

1、F(s)无重极点的情况

此时,F(s)总能展开成下面的部分分式之和:

其中,分子为待定系数。

例:求F(s)的拉氏变换

解一:

解二:

所以

例2

若p

1,p

2

为共轭复数,相应的系数k

1

,k

2

也是共轭复数,故只需求出一个即可。

2、F(s)有重极点的情况

设F(s)有r 个重极点p

1

,其余极点均不相同,则

例:求的拉氏反变换

所以:

2-2 系统的数学模型

一、概述

为了分析、研究系统的动态特性,一般情况下,首先要建立系统的数学模型。1、数学模型的概念

我们把描述系统或元件的动态特性的数学表达式叫做系统或元件的数学模型。

深入了解元件及系统的动态特性,准确建立它们的数学模型-称建模,只有得到较为准确的数学建模,才能设计出性能良好的控制系统。

动态特性控制系统所采用的元件种类繁多,虽然各自服从的规律,但它们有一共同点:即任何系统或元件总有物质或能量流入,同时又有某些物质或能量流出,系统通常又是有贮存物质或能量的能力,贮存量的多少用状态变量来表示。状态变量是反应系统流入量或流出量之间平衡的物理量,由于外部供给系统的物质或能量的速率是有限的,不可能是无穷大,因此,系统的状态变量有一个状态变到另一个状态不可能瞬间完成,而要经过一段时间。这样,状态变量的变化就有一个过程,这就是动态过程。例如,电路中电容上的电压是一个状态变量,它由一个值变到另一个值不可能瞬间完成。具有一定惯量的物体的转速是一个状态变量,转速的变化也是一个过渡过程,具有一定质量的物体的温度是一个状态变量,它由温度T0变到T,同样有一个动态过程;又如容器中液位也是一个状态变量,液位的变化也要一定的时间。

建立控制系统数学模型的方法有

1)分析法-对系统各部分的运动机理进行分析,依据系统本身所遵循的有关定律

列写数学表达式,并在列写过程中进行必要的简化。

建立系统数学模型的几个步骤:

?建立物理模型。

?列写原始方程。利用适当的物理定律—如牛顿定律、基尔霍夫电流和电压定律、能量守恒定律等)

?选定系统的输入量、输出量及状态变量(仅在建立状态模型时要求),消去中间变量,建立适当的输入输出模型或状态空间模型。

2)实验法-是根据系统对某些典型输入信号的响应或其它实验数据建立数学模型。即人为施加某种测试信号,记录基本输出响应。这种用实验数据建立数学模型的方法也称为系统辩识。

数学模型的逼近

1、线性系统和非线性系统

1) 线性系统

可以用线性微分方程描述的系统。如果方程的系数为常数,则为线性定常系统;

例:,其中,a,b,c,d均为常数。

如果方程的系数是时间t的函数,则为线性时变系统;

线性系统线性是指系统满足叠加原理,即:系统在几个外力作用下所产生的响应等于各个外加作用单独作用时的响应之和。

可加性:

齐次性:

2) 非线性系统

用非线性微分方程描述的系统。非线性系统不满足叠加原理。

例:就是非线性系统。

实际的系统通常都是非线性的,线性只在一定的工作范围内成立。

即在实际系统中,变量之间不同程度地包含有非线性关系,如:间隙、饱合、死区、干磨擦特性等。

非线性系统为分析方便,通常在合理的条件下,可进行如下外理:

①线性化②忽略非线性因素③用非线性系统的分析方法来处理。

3)线性系统和非线性系统的判别

设某系统的微分方程如下:

①若方程的系数a

i ,b

j

都既不是x

o

(t)和x

i

(t)及它们的导数的函数,又不是时间

的函数,则此方程是线性定常的,此系统为线性定常系统。

②若a

i ,b

j

是时间的函数,则该方程是线性时变的,此系统称为线性时变系统。

③若a

i ,b

j

中只要有一个系数依赖于x

o

(t)和x

i

(t)或它们的导数,或者在微分方

程中出现t r 其它函数形式,该方程为非线性的。

例:线定常

非线性

判断下列微分方程表达的系统是线性系统还是非线性系统?

a: (线定常)

b: (非线性)

c:(线时变)

(t):时变系统

式中:u:输入信号 y:输出信号 a

i

3、本课程涉及的数学模型形式

时间域:微分方程(一阶微分方程组)、差分方程、状态方程

复数域:传递函数、结构图

频率域:频率特性

二、系统微分方程的建立

1、建立微分方程的一般步骤

1)分析系统工作原理和信号传递变换的过程,确定系统和各元件的输入、输出量;

2)从输入端开始,按照信号传递变换过程,依据各变量遵循的物理学定律,依次列写出各元件、部件的动态微分方程;

3)消去中间变量,得到描述元件或系统输入、输出变量之间关系的微分方程;

4)标准化:右端输入,左端输出,导数降幂排

2、机械系统微分方程的列写

机械系统中部件的运动有直线和转动两种。机械系统中以各种形式出现的物理现象,都可简化为质量、弹簧和阻尼三个要素。列写其微分方程通常用

达朗贝尔原理。即:作用于每一个质点上的合力,同质点惯性力形成平衡力系。用公式表示:

1)直线运动(机械平移系统)

式中,m、C、K通常均为常数,故机械平移系统可以由二阶常系数微分方程描述。显然,微分方程的系数取决于系统的结构参数,而阶次等于系统中独立储能元件(惯性质量、弹簧)的数量。

2)转动系统

3、电网络系统

电网络系统分析主要根据基尔霍夫电流定律和电压定律写出微分方程式,进而建立系统的数学模型。

1)基尔霍夫电流定律:汇聚到某节点的所有电流之代数和应等于0(即流出节

点的电流之和等于所有流进节点的电流之和)。

2)尔霍夫电压定律

电网络的闭合回路中电势的代数和等于沿回路的电压降的代数和。

电网络系统中三人基本原件是:电阻、电感、电容

电阻:

电容:

电感:

例:

小结

物理本质不同的系统,可以有相同的数学模型,从而可以抛开系统的物理属性,用同一方法进行具有普遍意义的分析研究(信息方法)。

从动态性能看,在相同形式的输入作用下,数学模型相同而物理本质不同的系统其输出响应相似。相似系统是控制理论中进行实验模拟的基础;

拉氏变换和z变换表

附录A 拉普拉斯变换及反变换 1.拉氏变换的基本性质 附表A-1 拉氏变换的基本性质 1()([n n k f t dt s s -+= +∑?个

2.常用函数的拉氏变换和z变换表 附表A-2 常用函数的拉氏变换和z变换表

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式,即 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中,系数n n a a a a ,,...,,110-和011,, ,,m m b b b b -都是实常数;n m ,是正整数。按代数定理 可将)(s F 展开为部分分式。分以下两种情况讨论。 (1)0)(=s A 无重根:这时,F(s)可展开为n 个简单的部分分式之和的形式,即 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根;i c 为待定常数,称为()F s 在i s 处的留数,可按下列两式计算:lim()()i i i s s c s s F s →=- (F-2) 或 i s s i s A s B c ='= )() ( (F-3)

式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数为 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=1 i n s t i i c e =∑ (F-4) (2)0)(=s A 有重根:设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…,n s 为F(s)的n r -个单根;其中,1+r c ,…,n c 仍按式(F-2)或式(F-3)计算,r c ,1-r c ,…,1c 则按下式计算: )()(lim 11 s F s s c r s s r -=→ 11lim [()()]i r r s s d c s s F s ds -→=- )()(lim !11)() (1s F s s ds d j c r j j s s j r -=→- (F-5) )()(lim )!1(11)1() 1(11s F s s ds d r c r r r s s --=--→ 原函数)(t f 为 [])()(1 s F L t f -= ??????-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L 11 111 1111)()() ( t s n r i i t s r r r r i e c e c t c t r c t r c ∑+=---+?? ????+++-+-=112211 1 )!2()!1( (F-6)

拉氏变换及其计算机公式

时域的函数可以通过线性变换的方法在变换域中表示,变换域的表示有时更为简捷、方便。例如控制理论中常用的拉普拉斯变换,简称拉氏变换,就是其中的一种。 一、拉氏变换的定义 已知时域函数,如果满足相应的收敛条件,可以定义其拉氏变换为 (2-45) 式中,称为原函数,称为象函数,变量为复变量,表示为 (2-46) 因为是复自变量的函数,所以是复变函数。 有时,拉氏变换还经常写为 (2-47) 拉氏变换有其逆运算,称为拉氏反变换,表示为 (2-48)

上式为复变函数积分,积分围线为由到的闭曲线。 二、常用信号的拉氏变换 系统分析中常用的时域信号有脉冲信号、阶跃信号、正弦信号等。现复习一些基本时域信号拉氏变换的求取。 (1)单位脉冲信号 理想单位脉冲信号的数学表达式为 (2-49) 且 (2-50) 所以 (2-51) 说明: 单位脉冲函数可以通过极限方法得到。设单个方波脉冲如图2-13所示,脉冲的宽度为,脉冲的高度为,面积为1。当保持面积不变,方波脉冲的宽度趋

于无穷小时,高度趋于无穷大,单个方波脉冲演变成理想的单位脉冲函数。在坐标图上经常将单位脉冲函数 表示成单位高度的带有箭头的线段。 由单位脉冲函数的定义可知,其面积积分的上下限是从到的。因此在求它的拉氏变换时,拉氏变换的积分下限也必须是。由此,特别指明拉氏变换定义式中的积分下限是,是有实际意义的。所以,关于拉氏变换的积分下限根据应用的实际情况有,,三种情况。为不丢掉信号中位于处可能存在的脉冲函数,积分下限应该为。 (2)单位阶跃信号 单位阶跃信号的数学表示为 (2-52) 又经常写为 (2-53)

由拉氏变换的定义式,求得拉氏变换为 (2-54) 因为 阶跃信号的导数在处有脉冲函数存在,所以单位阶跃信号的拉氏变换,其积分下限规定为。 (3)单位斜坡信号 单位斜坡信号的数学表示为 (2-55) 图2-15单位斜坡信号

拉普拉斯变换公式总结

拉普拉斯变换、连续时间系统的S 域分析 基本要求 通过本章的学习,学生应深刻理解拉普拉斯变换的定义、收敛域的概念:熟练掌握拉普拉斯变换的性质、卷积定理的意义及它们的运用。能根据时域电路模型画出S 域等效电路模型,并求其冲激响应、零输入响应、零状态响应和全响应。能根据系统函数的零、极点分布情况分析、判断系统的时域与频域特性。理解全通网络、最小相移网络的概念以及拉普拉斯变换与傅里叶变换的关系。会判定系统的稳定性。 知识要点 1. 拉普拉斯变换的定义及定义域 (1) 定义 单边拉普拉斯变换: 正变换0[()]()()st f t F s f t dt e ζ∞ -- ==? 逆变换 1 [()]()()2j st j F s f t F s ds j e σσζπ+∞ -∞ == ? 双边拉普拉斯变换: 正变换 ()()st B s f t dt e F ∞ --∞ =? 逆变换1 ()()2j st B j f t s ds j e F σσπ+∞ -∞ = ? (2) 定义域

若0σσ>时,lim ()0t t f t e σ-→∞ =则()t f t e σ-在0σσ>的全部范围内收敛,积分0()st f t dt e +∞ -- ? 存 在,即()f t 的拉普拉斯变换存在。0σσ>就是()f t 的单边拉普拉斯变换的收敛域。0σ与函数()f t 的性质有关。 2. 拉普拉斯变换的性质 (1) 线性性 若11[()]()f t F S ζ=,22[()]()f t F S ζ=,1κ,2κ为常数时,则11221122[()()]()()f t f t F s F s ζκκκκ+=+ (2) 原函数微分 若[()]()f t F s ζ=则() [ ]()(0)df t sF s f dt ζ-=- 1 1()0 ()[]()(0)n n n n r r n r d f t s F s s f dt ζ----==-∑ 式中() (0)r f -是r 阶导数() r r d f t dt 在0-时刻的取值。 (3) 原函数积分 若[()]()f t F s ζ=,则(1)(0)()[()]t f F s f t dt s s ζ---∞ =+? 式中0(1) (0)()f f t dt ---∞=? (4) 延时性 若[()]()f t F s ζ=,则000[()()]()st f t t u t t e F s ζ---= (5) s 域平移

拉氏变换表

附录A 拉普拉斯变换及反变换1.表A-1 拉氏变换的基本性质

2.表A-2 常用函数的拉氏变换和z变换表

3.用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项

查表进行反变换。设)(s F 是s 的有理真分式 1110 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++= =----ΛΛ (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110-Λ都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)(ΛΛ (F-1) 式中,n s s s ,,,21Λ是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='=)() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得

原函数 []? ?? ?? ?-==∑=--n i i i s s c L s F L t f 11 1 )()(= t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= +Λ = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++--ΛΛΛ11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根; 其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算: )()(lim 11 s F s s c r s s r -=→ )]()([lim 111 s F s s ds d c r s s r -=→- M )()(lim !11)() (1s F s s ds d j c r j j s s j r -=→- (F-5)

(推荐)拉氏变换常用公式

常用拉普拉斯变换总结 1、指数函数 00)(≥

? ? ∞ -∞ -∞ ----==0 d d ][t s e s e t t te t L st st st 2 01d 1s t e s st == ?∞- 6、正弦函数 0sin 0 )(≥

常用函数的拉氏变换[1]

附录A 拉普拉斯变换及反变换 419

420

421 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1110 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++= =---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;

拉氏变换与反变换

机电控制工程所涉及的数学问题较多,经常要解算一些线性微分方程。按照一般方法解算比较麻烦,如果用拉普拉斯变换求解线性微分方程,可将经典数学中的微积分运算转化为代数运算,又能够单独地表明初始条件的影响,并有变换表可查找,因而是一种较为简便的工程数学方法。 拉普拉斯变换的定义 如果有一个以时间为自变量的实变函数,它的定义域是,那么的拉普拉斯变换定义为 式中,是复变数,(σ、ω均为实数),称为拉普拉斯积分;是函数的拉普拉斯变换,它是一个复变函数,通常也称为的象函数,而称为的原函数;L是表示进行拉普拉斯变换的符号。 式()表明:拉氏变换是这样一种变换,即在一定条件下,它能把一实数域中的实变函数变换为一个在复数域内与之等价的复变函数。 几种典型函数的拉氏变换 1.单位阶跃函数的拉氏变换 单位阶跃函数是机电控制中最常用的典型输入信号之一,常以它作为评价系统性能的标准输入,这一函数定义为 单位阶跃函数如图所示,它表示在时刻突然作用于系统一个幅值为1的不变量。单位阶跃函数的拉氏变换式为 当,则。 所以 () 图单位阶跃函数 2.指数函数的拉氏变换 指数函数也是控制理论中经常用到的函数,其中是常数。 令

则与求单位阶跃函数同理,就可求得 () 3.正弦函数与余弦函数的拉氏变换 设,,则 由欧拉公式,有 所以 )同理 )4.单位脉冲函数δ(t)的拉氏变换 单位脉冲函数是在持续时间期间幅值为的矩形波。其幅值和作用时间的乘积等于1,即。如图所示。 图单位脉冲函数 单位脉冲函数的数学表达式为 其拉氏变换式为 此处因为时,,故积分限变为。 5.单位速度函数的拉氏变换 单位速度函数,又称单位斜坡函数,其数学表达式为 见图所示。 图单位速度函数 单位速度函数的拉氏变换式为 利用分部积分法 令 则

拉普拉斯变换公式

附录A 拉普拉斯变换及反变换

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1110 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++= =----ΛΛ (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110-Λ都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)(ΛΛ (F-1) 式中,n s s s ,,,21Λ是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可 按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= +Λ =n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++--ΛΛΛ11 111111)()()(

拉氏变换定义及性质

拉氏变换与反变换 机电控制工程所涉及的数学问题较多,经常要解算一些线性微分方程。按照一般方法解算比较麻烦,如果用拉普拉斯变换求解线性微分方程,可将经典数学中的微积分运算转化为代数运算,又能够单独地表明初始条件的影响,并有变换表可查找,因而是一种较为简便的工程数学方法。 2.5.1 拉普拉斯变换的定义 如果有一个以时间t 为自变量的实变函数 ()t f ,它的定义域是 0≥t ,,那么()t f 的的拉普拉斯变换定义为 ()()()0 e d st F s L f t f t t ∞ -=?????? s 是复变数, ωσj +=s (σ、ω均为实数), ?∞ -0 e st 称为拉普拉斯积分; )(s F 是 函数 )(t f 的拉普拉斯变换,它是一个复变函数,通常也称 )(s F 为 )(t f 的象函数,而称 )(t f 为 )(s F 的原函数;L 是表示进行拉普拉斯变换的符号。 式()表明:拉氏变换是这样一种变换,即在一定条件下,它能把一实数域中的实变函数变换为一个在复数域内与之等价的复变函数 )(s F 。 1.单位阶跃函数 )(1t 的拉氏变换 单位阶跃函数是机电控制中最常用的典型输入信号之一,常以它作为评价系统性能的标准输入,这一函数定义为 ?? ?≥s ,则 0 e lim →-∞ →st t 。

最全拉氏变换计算公式

1 最全拉氏变换计算公式 1. 拉氏变换的基本性质 1 线性定理 齐次性 )()]([s aF t af L = 叠加性 )()()]()([2121s F s F t f t f L ±=± 2 微分定理 一般形式 = -=][ '- -=-=----=-∑1 1 )1() 1(1 22 2) ()() 0()()(0)0()(])([)0()(]) ([ k k k k n k k n n n n dt t f d t f f s s F s dt t f d L f sf s F s dt t f d L f s sF dt t df L )( 初始条件为0时 )(])([s F s dt t f d L n n n = 3 积分定理 一般形式 ∑???????????==+-===+=+ +=+= n k t n n k n n n n t t t dt t f s s s F dt t f L s dt t f s dt t f s s F dt t f L s dt t f s s F dt t f L 10 102 2022 ]))(([1)(])()([]))(([])([)(]))(([])([)(])([个 共个 共 初始条件为0时 n n n s s F dt t f L ) (]))(([=??个 共 4 延迟定理(或称t 域平移定理) )()](1)([s F e T t T t f L Ts -=-- 5 衰减定理(或称s 域平移定理) )(])([a s F e t f L at +=- 6 终值定理 )(lim )(lim 0 s sF t f s t →∞ →= 7 初值定理 )(lim )(lim 0 s sF t f s t ∞ →→= 8 卷积定理 )()(])()([])()([210 210 21s F s F d t f t f L d f t f L t t =-=-??τττττ

拉氏变换表(包含计算公式)

1 拉氏变换及反变换公式 1. 拉氏变换的基本性质 1 线性定理 齐次性 )()]([s aF t af L = 叠加性 )()()]()([2121s F s F t f t f L ±=± 2 微分定理 一般形式 = -=][ '- -=-=----=-∑ 1 1 ) 1() 1(1 2 2 2 ) ()() 0()() (0)0()(]) ([) 0()(])([k k k k n k k n n n n dt t f d t f f s s F s dt t f d L f sf s F s dt t f d L f s sF dt t df L ) ( 初始条件为0时 )(]) ([ s F s dt t f d L n n n = 3 积分定理 一般形式 ∑ ???????????==+-===+=+ + = + = n k t n n k n n n n t t t dt t f s s s F dt t f L s dt t f s dt t f s s F dt t f L s dt t f s s F dt t f L 1 1 2 2 2 2 ]))(([1)(])()([]))(([])([)(]))(([])([)(])([个 共个 共 初始条件为0时 n n n s s F dt t f L )(]))(([=??个 共 4 延迟定理(或称t 域平移定理) )()](1)([s F e T t T t f L Ts -=-- 5 衰减定理(或称s 域平移定理) )(])([a s F e t f L at +=- 6 终值定理 )(lim )(lim 0 s sF t f s t →∞ →= 7 初值定理 )(lim )(lim 0 s sF t f s t ∞ →→= 8 卷积定理 )()(])()([])()([210 210 21s F s F d t f t f L d f t f L t t =-=-??τττττ

(完整版)拉普拉斯变换及其逆变换表

拉普拉斯变换及其反变换表

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1 1 n 1 n n n 1 1 m 1 m m m a s a s a s a b s b s b s b )s (A )s (B )s (F ++++++++==----ΛΛ (m n >) 式中系数n 1 n 1 a ,a ,...,a ,a -,m 1 m 1 b ,b ,b ,b -Λ都是实常数;n m ,是正整数。按 代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑ =-=-++-++-+-=n 1 i i i n n i i 2 2 1 1 s s c s s c s s c s s c s s c )s (F ΛΛ 式中,Sn 2S 1S ,,,Λ是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )s (F )s s (lim c i s s i i -=→ 或 i s s i ) s (A ) s (B c ='= 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []t s n 1 i i n 1i i i 11i e c s s c L )s (F L )t (f -==--∑∑=??????-== ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为

拉氏变换定义及性质

2.5 拉氏变换与反变换 机电控制工程所涉及的数学问题较多,经常要解算一些线性微分方程。按照一般方法解算比较麻烦,如果用拉普拉斯变换求解线性微分方程,可将经典数学中的微积分运算转化为代数运算,又能够单独地表明初始条件的影响,并有变换表可查找,因而是一种较为简便的工程数学方法。 2.5.1 拉普拉斯变换的定义 如果有一个以时间t 为自变量的实变函数 ()t f ,它的定义域是 0≥t ,,那么()t f 的的拉普拉斯变换定义为 ()()()0 e d st F s L f t f t t ∞ -=?????? (2.10) s 是复变数, ωσj +=s (σ、ω均为实数), ?∞ -0e st 称为拉普拉斯积分; )(s F 是函数 )(t f 的拉普拉斯变换,它是一个复变函数,通常也称 )(s F 为 )(t f 的象函数,而称 )(t f 为 )(s F 的原函数;L 是表示进行拉普拉斯变换的符号。 式(2.10)表明:拉氏变换是这样一种变换,即在一定条件下,它能把一实数域中的实变函数变换为一个在复数域内与之等价的复变函数 )(s F 。 1.单位阶跃函数 )(1t 的拉氏变换 单位阶跃函数是机电控制中最常用的典型输入信号之一,常以它作为评价系统性能 的标准输入,这一函数定义为 ?? ?≥s ,则 0 e lim →-∞ →st t 。 所以:

拉氏变换常用公式

附录A 拉普拉斯变换及反变换表A-1 拉氏变换的基本性质

表A-2 常用函数的拉氏变换和z变换表

用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设 )(s F 是s 的有理真分式 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 1 1 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + =n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;

拉氏变换定义、计算、公式及常用拉氏变换反变换

****拉普拉斯变换及反变换**** 定义:如果定义: ? 是一个关于的函数,使得当时候, ; ? 是一个复变量; ? 是一个运算符号,它代表对其对象进行拉普拉斯积分;是 的拉普拉斯变换结果。 则的拉普拉斯变换由下列式子给出:

2.表A-2 常用函数的拉氏变换和z变换表

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1110 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1)

式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []? ?????-==∑=--n i i i s s c L s F L t f 11 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根; 其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算: )()(lim 11 s F s s c r s s r -=→ )]()([lim 111 s F s s ds d c r s s r -=→- )()(lim !11)() (1s F s s ds d j c r j j s s j r -=→- (F-5) )()(lim )!1(11)1() 1(11s F s s ds d r c r r r s s --=--→

拉普拉斯变换公式

附录A拉普拉斯变换及反变换 419

420

421 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1110 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++= =---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(l i m s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='=)() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;

拉氏变换和傅里叶变换的关系

拉氏变换和傅里叶变换的关系 一、拉氏变换 1、拉氏变换的定义: 如果有一个以时间t 为自变量的实变函数 ()t f ,它的定义域是 0≥t ,,那么()t f 的的拉普拉斯变换定义为 ()()()0e d st F s L f t f t t ∞ -=?????? s 是复变数, ωσj +=s (σ、ω均为实数), ?∞ -0e st 称为拉普拉斯积分; )(s F 是函数 )(t f 的拉普拉斯变换,它是一个复变函数,通常也称 )(s F 为 )(t f 的象函数,而称 )(t f 为 )(s F 的原函数;L 是表示进行拉普拉斯变换的符号。 s 式()表明:拉氏变换是这样一种变换,即在一定条件下,它能把一实数域中的实变函数变换为一个在复数域内与之等价的复变函数 )(s F 。 2、拉氏变换的意义 工程数学中常用的一种积分变换。它是为简化计算而建立的实变量函数和复变量函数间的一种函数变换。对一个实变量函数作拉普拉斯变换,并在复数域中作各种运算,再将运算结果作拉普拉斯反变换来求得实数域中的相应结果,往往比直接在实数域中求出同样的结果在计算上容易得多。拉普拉斯变换的这种运算步骤对于求解线性微分方程尤为有效,它可把微分方程化为容易求解的代数方程来处理,从而使计算简化。在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。 在工程学上,拉普拉斯变换的重大意义在于:将一个信号从时域上,转换为复频域(s 域)上来表示;在线性系统,控制自动化上都有广泛的应用 二、傅里叶变换 1、傅里叶变换的定义:

f(t)是t的函数,如果t满足狄里赫莱条件:具有有限个间断点;具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅立叶变换,②式的积分运算叫做F(ω)的傅立叶逆变换。F(ω)叫做f(t)的像函数,f(t)叫做 F(ω)的像原函数。F(ω)是f(t)的像。f(t)是F(ω)原像。 ① 傅里叶变换 ② 傅里叶逆变换 2、傅里叶变换的意义 傅里叶变换简单通俗理解就是把看似杂乱无章的信号考虑成由一定振幅、相位、频率的基本正弦(余弦)信号组合而成,傅里叶变换的目的就是找出这些基本正弦(余弦)信号中振幅较大(能量较高)信号对应的频率,从而找出杂乱无章的信号中的主要振动频率特点。如减速机故障时,通过傅里叶变换做频谱分析,根据各级齿轮转速、齿数与杂音频谱中振幅大的对比,可以快速判断哪级齿轮损伤。 二、拉氏变换和傅里叶变换的关系 傅里叶变换:的物理意义非常清晰:将通常在时域表示的信号,分解为多个正弦信号的叠加。每个正弦信号用幅度、频率、相位就可以完全表征。傅里叶变换之后的信号通常称为频谱,频谱包括幅度谱和相位谱,分别表示幅度随频率的分布及相位随频率的分布。对一个信号来说,就包含的信息量来讲,时域信号及其相应的傅里叶变换之后的信号是完全一样的。那傅里叶变换有什么作用呢因为有的信号主要在时域表现其特性,如电容充放电的过程;而有的信号则主要在频域表现其特性,如机械的振动,人类的语音等。若信号的特征主要在频域表

拉氏变换重要公式

拉氏变换重要公式 1 拉氏变换定义 ()()[]()dt e t f t f L s F st 0-∞ ?==? 2 常用公式 ()[]1t L =δ/()[]s 1t 1L = /a s 1]e [L at -= /2 at a) (s 1]e [L -= t /[]2 2 s t sin L ω ω ω+= []2 2 s s t cos L ω ω+= /[]2 s 1t L = /[]1 n n s n!t L += /[]2 2at -a)(s t sin e L ω ω ω++= /[] 2 2 at -a)(s a s t cos e L ω ω+++= 3 拉氏变换的几个重要定理 (1)线性性质: [])s (bF )s (aF )t (bf )t (af L 2121+=+ (2)微分定理: ()[]()()0f s F s t f L -?=' (3)积分定理:()[]()() ()0f s 1s F s 1dt t f L 1-+?= ? 零初始条件下有:()[]()s F s 1dt t f L ?= ? 进一步有: ()()()()()()()()0f s 10f s 10f s 1s F s 1dt t f L n 21n 1n n n n ----++++=??? ? ??????? (4)位移定理 实位移定理:()[]()s F e -t f L s ?=-ττ 虚位移定理:()[]()a -s F t f e L at =? (5)终值定理(极限确实存在时) ()()()s F s lim f t f lim 0s t ?=∞=→∞→ (6)初值定理(极限确实存在时) ()()()s F s lim 0f t f lim s 0t ?==∞ →→ 4 拉氏反变换 (1) 反变换公式:?∞ +∞ -= j j st ds e ).s (F j 21 )t (f σσ π (2) 查表法——分解部分分式(留数法,待定系数法,试凑法) 设 )m n (a s a s a s a s b s b s b s b ) s (A )s (B )s (F n 1-n 2 -n 21 -n 1n m 1-m 1 m 1m 0>+++++++++= = - 其中分母多项式可以分解因式为: )p s ()p s )(p s ()s (A n 21---= )s (A p i 为的根(特征根),分两种情形讨论:

拉氏变换

拉普拉斯变换 拉氏变换的物理意义 拉氏变换是将时间函数f(t)变换为复变函数F(s),或作相反变换。 时域(t)变量t 是实数,复频域F(s)变量s 是复数。变量s 又称“复频率”。 拉氏变换建立了时域与复频域(s 域)之间的联系。 s=jw ,当中的j 是复数单位,所以使用的是复频域。通俗的解释方法是,因为系统中有电感X=jwL 、电容X=1/jwC ,物理意义是,系统H(s)对不同的频率分量有不同的衰减,即这种衰减是发生在频域的,所以为了与时域区别,引入复数的运算。但是在复频域计算的形式仍然满足欧姆定理、KCL 、KVL 、叠加法 Laplace 变换是工程数学里的重要变换,主要是实现微分积分电路的代数运算,建议参看《积分变换》这书.在一阶和高阶电路中,有一些问题在频域中分析比在时域中分析要方便的多,而拉氏变换就是一个很好的分析工具。它将时域中的信号输入,变换成S 域中的信频输入,再由S 域的输出,转换成时频的输出,很简洁明了,又可以分析出信号的多种变化.工程数学或者积分变换都可以解决你所提的问题. 拉普拉斯变换简称拉氏变换。它是一种函数的变换,经变换后,可将时域的微分方程变换成复数域的代数方程。并且在变换的同时,即将初始条件引入,避免了经典解法中求积分常数的麻烦,可使解题过程大为简化。因此,对于那些以时间t 为自变量的定常线性微分方程来说,拉氏变换求解法是非常有用的。 在经典自动控制理论中,自动控制的数学模型是建立在传递函数基础之上的,而传递函数的概念又是建立在拉氏变换的基础上,因此,拉氏变换是经典控制理论的重要数学基础,是分析研究线性动态系统的有力数学工具。本章着重介绍拉氏变换的定义,一些常用时间函数的拉氏变换,拉氏变换的性质以及拉氏反变换的方法。最后,介绍用拉氏变换解微分方程的方法。在学习中应注重该数学方法的应用,为后续章节的学习奠定基础。 2.1拉氏变换 2.1.1拉氏变换的定义 若()f t 为实变量时间t 的函数,且0t <时,函数()0f t =,则函数()f t 的拉氏变换记作 [()]f t L 或)(s F ,并定义为: [()]()()e d L st f t F s f t t +∞-==? (2.1) 式中s j σω=+为复变量,()F s 称为()f t 的象函数,称()f t 为()F s 的原函数。原函数是实变量t 的函数,象函数是复变量s 的函数。所以拉氏变换是将原来的实变量函数() f t

相关主题
文本预览
相关文档 最新文档