拉普拉斯变换 习题集
- 格式:doc
- 大小:145.00 KB
- 文档页数:3
拉普拉斯变换题库(共7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--六.拉普拉斯变换㈠选择㈡填空1.)(2)(t t f δ=的拉普拉斯变换是_______________2.)1()(-=t u t f 的拉普拉斯变换是_________________.3.)2()(-=t u t f 的拉普拉斯变换是_________________.4.t e t t f 22)(+=的拉普拉斯变换是_______________.5.)(5)(2t e t f t δ+=的拉普拉斯变换是_______________6.)2()(2-=t u e t f t 的拉普拉斯变换是________________.7.k e t t f kt n ()(=为实数)的拉普拉斯变换是__________________.8.t e t f t 3sin )(2-=的拉普拉斯变换是__________________.9.t e t f 2)(-=的拉普拉斯变换是_________________.10.t e t f 2)(=的拉普拉斯变换是__________________。
11.t t f =)(的拉普拉斯变换是________________12.t te t f -=)(的拉普拉斯变换是____________________.13.t t f 2cos )(=的拉普拉斯变换是_____________.14.at t f sin )(=的拉普拉斯变换是_________________.15.t t t f cos sin )(=的拉普拉斯变换是___________________.16. ()()sin f t u t t =的拉普拉斯变换是________________.17. ()sin(2)f t t =-的拉普拉斯变换是________________.18.t t f 2cos )(=的拉普拉斯变换是________________.19.t t f 2sin )(=的拉普拉斯变换是_______________.20.t e t f t sin )(-=的拉普拉斯变换是_________________.21.t e t f t cos )(=的拉普拉斯变换是______________.22.t e t t f 2)1()(-=的拉普拉斯变换是________________.23.t t t f cos 32sin 5)(-=的拉普拉斯变换是_________________.24.)(3sin 2)(t u t t f -=的拉普拉斯变换是_______________.25.)(3)(t t t f δ+=的拉普拉斯变换是___________________.26.t te t f -=1)(的拉普拉斯变换是__________________.27.)53()(-=t u t f 的拉普拉斯变换是_______________. 28.tt t f sin )(=的拉普拉斯变换是__________________. 29.t e t t f )()(δ=的拉普拉斯变换是_____________.30.t t t f sin )(=的拉普拉斯变换是______________. 31.932)(2++=s s s F 的拉普拉斯逆变换是___________________. 32.2)(+=s s s F 的拉普拉斯逆变换是_______________. 33.ss F 1)(=的拉普拉斯逆变换是_________________. 34.11)(-=s s F 的拉普拉斯逆变换是_________________. 35.11)(+=s s F 的拉普拉斯逆变换是___________________. 36.21)(ss F =的拉普拉斯逆变换是________________. 37.11)(2+=s s F 的拉普拉斯逆变换是________________. 38.2)1(1)(+=s s F 的拉普拉斯逆变换是________________. 39.11)(2-=s s F 的拉普拉斯逆变换是_________________. 40.se s F s2)(-=的拉普拉斯逆变换是____________________. 41.31)(ss F =的拉普拉斯逆变换是________________.42.91)(2+=s s F 的拉普拉斯逆变换是______________ 43.4)(2+=s s s F 的拉普拉斯逆变换是_______________. 44.41)(2+-=s s s F 的拉普拉斯逆变换是____________. 45.41)(2--=s s s F 的拉普拉斯逆变换是________________. 46.42)(s s F =的拉普拉斯逆变换是_______________. 47.51)(+=s s F 的拉普拉斯逆变换是______________. 48.2)(-=s s s F 的拉普拉斯逆变换是_______________. 49.)3)(1(2)(-+-=s s s s F 的拉普拉斯逆变换是________________. 50.432)(2++=s s s F 的拉普拉斯逆变换是__________________. 51.61)(2-++=s s s s F 的拉普拉斯逆变换是____________________. 52.61)(2--+=s s s s F 的拉普拉斯逆变换是________________. 53.161)(4-=s s F 的拉普拉斯逆变换是____________________. 54.23)(se s F s-=的拉普拉斯逆变换是__________________. 55.)1(1)(22+=s s s F 的拉普拉斯逆变换是__________________. 56.)2)(1(3)(+-=s s s s F 的拉普拉斯逆变换是_________________ 57.651)(2++-=s s s s F 的拉普拉斯逆变换是__________________。
积分变换练习题 第二章 Laplace 变换________系_______专业 班级 姓名______ ____学号_______§1 Laplace 变换的概念 §2 Laplace 变换的性质一、选择题1.设()(1)t f t e u t -=-,则[()]f t =L [ ](A )(1)1s e s --- (B )(1)1s e s -++ (C )1s e s -- (D )1se s -+11[(1)][()];1[(1)](1)ss t s u t e u t se e u t s e --+⎛⎫-== ⎪ ⎪ ⎪-= ⎪+⎝⎭由延迟性质可得,再由位移性质可得,L L L2.设2sinh ()tf t t =,则[()]f t =L [ ] (A )1ln 1s s -+ (B )1ln 1s s +- (C )12ln 1s s -+ (D )12ln 1s s +-见课本P84二、填空题1.设2()(2)f t t u t =-,则[]()f t =L。
22''222321[(2)][()];1442[(1)]ss s s u t e u t se s s t u t se s e -⎛⎫-== ⎪ ⎪++ ⎪⎛⎫-== ⎪ ⎪⎝⎭⎝⎭由延迟性质可得,再由象函数的微分性质P83(2.7)可得,L L L 2.设2()t f t t e =,则[]()f t =L。
(1)00''231[](Re()1);112[]1(1)t t st s t te e e dt e dt s s t e s s +∞+∞---⎛⎫===> ⎪- ⎪ ⎪⎛⎫== ⎪ ⎪--⎝⎭⎝⎭⎰⎰再由象函数的微分性质P83(2.7)可得,L L 三、解答题1.求下列函数的Laplace 变换:(1)302()12404t f t t t ≤<⎧⎪=-≤<⎨⎪≥⎩242242422402[()]()3(1)33334ststst st st s s s s s f t f t e dt e dt e dte e e e e e e s s s s s s s+∞----------==+--+=+=-++-=-⎰⎰⎰L(2)3,2()cos ,2t f t t t ππ⎧<⎪⎪=⎨⎪>⎪⎩20222222()22202222[()]()3cos 3333,cos cos()sin 2133[()].1stst st sst stst s s sts ssf t f t e dt e dt te dtee e dt ss se te dt ed ee d s e ef t s s sπππππππτππττππππττττ+∞+∞--------=+∞+∞+∞-+-----==+==-+-=+=-=-+=--++⎰⎰⎰⎰⎰⎰⎰,从而L L(3)()sin2tf t = 222002[()]sin 2sin .241t st s t f t e dt e d s ττττ=+∞+∞--===+⎰⎰L(4)()cos ()sin ()f t t t t u t δ=⋅-⋅200[()][cos ()sin ()]cos ()sin ()1cos sin 1.1st stst stst t f t t t t u t e dtt t e dt t u t e dttete dt s δδ-+∞-+∞+∞--+∞--==⋅-⋅=⋅-⋅=-=-+⎰⎰⎰⎰L2.求以2b 为周期的函数1,0()1,2t bf t b t b<≤⎧=⎨-<≤⎩的Laplace 变换。
第4章拉普拉斯变换与连续系统复频域分析4.6本章习题全解4.1 求下列函数的拉普拉斯变换(注意:为变量,其它参数为常量)。
(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)解:(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18) ()(19)(20)(21)(22)(23)(24)4.2 已知,求下列信号的拉普拉斯变换。
(1)(2)(3)(4)(5)解:(1)(2)(3)(4)(5)所以4.3 已知信号的拉普拉斯变换如下,求其逆变换的初值和终值。
(1)(2)(3)(4)解(1)初值:终值:(2)初值:终值:(3)初值:终值:(4)初值:终值:4.4 求题图4.4所示信号的单边拉普拉斯变换。
题图4.4解(1)所以根据微分性质所以注:该小题也可根据定义求解,可查看(5)小题(2)根据定义(3)根据(1)小题的结果再根据时移性质所以根据微分性质得(4)根据定义注:也可根据分部积分直接求取(5)根据单边拉氏变换的定义,本小题与(1)小题的结果一致。
(6)根据单边拉氏变换的定义,在是,对比(3)小题,可得4.5 已知为因果信号,,求下列信号的拉普拉斯变换。
(1)(2)(3)(4)解:(1)根据尺度性质再根据s域平移性质(2)根据尺度性质根据s域微分性质根据时移性质(3)根据尺度性质再根据s域平移性质(4)根据时移性质再根据尺度性质本小题也可先尺度变化得到,再时移单位,得到结果4.6 求下列函数的拉普拉斯逆变换。
(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)解:(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14){} =(15){} =(16){}=(17){}=(18){}=(19){}=(20){}=(21){}=(22){}=(23) {}=(24) ()=4.7 求如题图4.7所示的单边周期信号的拉普拉斯变换。
第四章拉普拉斯变换第一题选择题1.系统函数H( s)与激励信号X( s)之间B。
A、是反比关系;B、无关系; C 、线性关系;D、不确定。
2.如果一连续时间系统的系统函数H(s) 只有一对在复平面左半平面的共轭极点,则它的h(t) 应是 B。
A、指数增长信号 B 、指数衰减振荡信号 C 、常数 D 、等幅振荡信号3.一个因果稳定的连续系统,其H(s)的全部极点须分布在复平面的A。
A、左半平面B、右半平面C、虚轴上D、虚轴或左半平面4.如果一连续时间系统的系统函数H(s) 只有一个在左半实轴上的极点,则它的h(t)应是B。
A、指数增长信号B、指数衰减振荡信号C、常数 D 、等幅振荡信号5.一个因果稳定的连续系统,其H( s) 的全部极点须分布在复平面的A。
A 左半平面B右半平面C虚轴上D虚轴或左半平面6.若某连续时间系统的系统函数H(s)只有一对在复平面虚轴上的一阶共轭极点,则它的h(t)是 D 。
A 指数增长信号B指数衰减信号C常数D等幅振荡信号7.如果一连续时间系统的系统函数H(s) 只有一对在虚轴上的共轭极点,则它的h(t)应是DA、指数增长信号 B 、指数衰减振荡信号C、常数 D 、等幅振荡信号8.如果系统函数 H(s) 有一个极点在复平面的右半平面,则可知该系统B 。
A 稳定B 不稳定C 临界稳定D 无法判断稳定性9.系统函数 H( s) 是由 D决定的。
A 激励信号E(s) B响应信号R(s) C激励信号E(s) 和响应信号R(s) D系统。
10.若连续时间系统的系统函数H(s) 只有在左半实轴上的单极点,则它的h(t)应是B。
A 指数增长信号B指数衰减信号C常数D等幅振荡信号11、系统函数H(s)与激励信号X(s)之间BA、是反比关系; B 、无关系; C 、线性关系;D、不确定。
12.关于系统函数 H(s) 的说法,错误的是C。
A 是冲激响应 h(t)的拉氏变换 B决定冲激响应 h(t) 的模式 C 与激励成反比 D 决定自由响应模式13.若某连续时间系统的系统函数H(s) 只有一个在原点的极点,则它的h(t) 应是 C 。
第八章 拉普拉斯变换一、 判断题1.Laplace 变换本质是傅立叶变换。
( ) 2.任意函数的拉普拉斯变换都存在。
( )3. )3sin(π-t 和)3()3sin(ππ--t u t 的拉普拉斯变换结果相同。
4.可以通过计算1+s s 在1-=s 处留数得到1+s s的拉普拉斯逆变换。
( ) 5.可以通过计算st s e s e 1+ 在1-=s 处留数得到1+s e s的拉普拉斯逆变换。
( ) 6.用拉普拉斯变换求微分方程时可直接求出满足初始条件的解。
( )二、 选择题(2)=-)]4[cos(πt L ( )(A )11222++s s (B )11222+-s s (C )s e s s 421122π-++ (D )s e s s 421122π-+- (3) =⎰-]d sin [03ttt t eL ( )(A )1)3(112+-s s (B )1)3(112++s s (C )1)3(112++-s s (D )1)3(112+--s s (4) =⎰-]d sin [L 03tt t t e t( )(A )1)3(101231222+-++-s s s s (B )1)3(101231222+-++s s s s )()]([),()()1(0=-=t f t t t f L 则设δπ2)()()(1)(00D eC e B A st st -(C )1)3(101231222++++-s s s s (D )1)3(101231222++++s s s s (5) 函数1)1(22++s s 的拉普拉斯逆变换为( ) (A )t e t t cos 2)(--δ (B )t t t sin 2cos 2)(--δ (C )t e t t sin 2)(--δ (D)ite i 21- (6) 函数s e s s-+1的拉普拉斯逆变换为( ) (A )t e t ---)1(δ (B )t e t u t ----)1()1(δ(C ))1()1(---t u e t (D ))1()1()1()1(------t u e t u t t δ (7)积分⎰+∞-02cos tdt te t 的值为( )(A ) 0 (B)253 (C) 253- (D) 254 (8) 积分⎰⎰+∞-0]cos [dt e d e t ττττ的值为( )(A ) 0 (B) 1 (C) 1- (D) 不存在 (9) a t <时)()(t f a t u *-的值为( )(A ) 0 (B) 1 (C) 1- (D) 不存在三、 填空题 (1)设L ),()]([s F t f = ,0>a 则L =-)]([atf eat(2)L =--)]1([2te u t(3)L =+-]cos [)(t e t βα (4)L =--)]2()2[sin(t u t(5)L=+--][151se s(6)L=--])(1[31a s s (7)L=++-])1(1[ln 21s s s(8)=⎰∞+dt ttsin (9)=*-)()(t f a t δ 四、 计算下列函数的拉普拉斯变换.(1)⎪⎩⎪⎨⎧><≤-<≤=4,042,100,3)(t t t t f (2)282cos 32sin )(2+--=-te t t t f(3)at t t f cos )(= (4))2(sin )(-⋅=t u t t f (5)dt tte tt ⎰-02cos 五、 计算下列函数的拉普拉斯逆变换。
第9章拉普拉斯变换习题9.1 对下列每个积分,给出保证积分收敛的实参数σ的值:解:(a)因可见,要使积分收敛,当t→∞时,需满足5+σ>0,即σ>-5,此时积分为。
(b)此题中的被积函数与(a)相同,只是积分区间不同。
利用(a)中的积分过程可见,要使积分收敛,当t→∞时,需满足5+σ<0,即σ<-5。
σ<-5即为实数σ的取值范围。
(c)与(b)相似。
由于积分是在一个有限的区间[-5,5]上进行的,所以无论σ取何实值,积分均收敛,即实数盯的取值范围为-∞<1<∞。
(d)与(b)相似。
要使积分收敛,当t→∞时,应有5+σ>0,即t>-5;且当t→-∞时,又应有5+σ<0,即σ<-5。
综合以上分析可知,无论σ取何值,该积分都不收敛。
(e)此积分可化为以上第一个积分要收敛,需满足σ>-5。
对于第二个积分,由于可见要使其收敛,需满足σ<5。
综上所述,当-5<σ<5时,积分收敛。
(f)此积分可化为由(e)中分析可知,当实数σ<5时,积分收敛。
9.2 考虑信号x(t)=e-5t u(t-1)其拉普拉斯变换记为X(s),(a)利用式(9.3)求X(s),并给出它的收敛域。
(b)确定有限数A和t0,以使g(t)=Ae-5t u(-t-t0)的拉普拉斯变换G(s)与X (s)有相同的代数式。
对应于G(s)的收敛域是什么?解:(a)由拉普拉斯变换的定义得(b)由拉普拉斯变换的定义得要使G(s)收敛,当t→∞时,需满足,即,此时对比G(s)与X(s)的代数表达式可发现,要使两者相同,应有A=-1,t0=-1,G (s)的ROC为9.3 考虑信号x(t)=e-5t u(t)+e-βt u(t)其拉普拉斯变换记为X(s)。
若X(s)的收敛域是Re{s}>-3,应在β的实部和虚部上施加什么限制?解:利用常用信号的拉普拉斯变换对可直接写出这里的β可为复数,也可为实数。
若β为复数,那么只有它的实部对X(s)的ROC有影响。
X(s)的ROC为Re{S}大于-5和Re{-β}中的大者。
第14 章 Laplace 变换1. 求下列函数的拉氏变换 (1)1cos wtw- (2)chwt 解 (1){}{}220sin 1cos sin ()tL wt wt wL Lwzdz w p p p w -⎧⎫===⎨⎬+⎩⎭⎰(2){}{}22111122wt wt pL chwt L e e p w p w p w-⎧⎫=+=+=⎨⎬-+-⎩⎭ 2.求下列函数的逆拉氏变换 (1)2845p p p +++; (2)222()p p a + 其中a >0。
解 (1)111222821645(2)1(2)1p p L L L p p p p ---⎧⎫⎧⎫⎧⎫++=+⎨⎬⎨⎬⎨⎬++++++⎩⎭⎩⎭⎩⎭22cos 6sin tt et e t --=+(2)1222sin ()2pt at L p a a -⎧⎫=⎨⎬+⎩⎭3. 设11()sin f t wt w=,2()f t chwt =,其中w ≠0,求12()()f t f t *。
解法1 由于{}{}{}1212L f f L f L f *=⋅ {}12211()sin L f t L wt w p w⎧⎫==⎨⎬+⎩⎭ {}{}222()pL f t L chwt p w ==-所以 {}1222221pL f f p w p w*=⋅+- 2222222()2()p pw p w w p w =--+2211cos 22L chwt L wt w w ⎧⎫⎧⎫=-⎨⎬⎨⎬⎩⎭⎩⎭2211cos 22L chwt wt w w ⎧⎫=-⎨⎬⎩⎭1221(cos )2f f chwt wt w *=- 解法2 由卷积定义求1201()()sin ()tf t f t w chw t d wτττ*=-⎰()()01sin 2w t w t te e w d w ττττ---+=⎰ ()()0011sin sin 22t t w t w t e w d e w d w w ττττττ---=+⎰⎰ 22221111sin cos sin 4444wt wt wt e wt w w w w =--++-2211cos 44wtt e w w -+ 2211cos 222wt wt e e wt w w -+=-21(cos )2chwt wt w =- 4.求解'1(0)0x x x +=⎧⎨=⎩解 对方程施行Laplace 变换,并注意初始条件:x(0)=0,我们有 [][][]'1L x L x L +=[][]1pL x L x p+=[]11111(1)1(1)L x p p p p p p ==-=-++--[]11111(1)tx L L x L e p p ---⎡⎤==-=-⎢⎥--⎣⎦5. 求解2'3(0)2tx x e x -⎧-=-⎨=⎩解 对方程两边施以Laplace 变换,并注意初始条件x(0)=0,则有[][]2'3tL x L x L e -⎡⎤-=-⎣⎦[][]3(0)2pL x x L x p ---=+ []311(1)(2)21L x p p p p -==--++-11211()()21t tx t L x L e e p p ---⎡⎤==-=-⎢⎥+-⎣⎦6. 求解01"(0),'(0)tx x e x x x x ⎧+=⎨==⎩解 对方程两边施以Laplace 变换得[][]"tL x L x L e ⎡⎤+=⎣⎦[][]20111p L x px x L x p --+=- 解得 []0122221111121212111x p x p L x p p p p p =--++-++++ 所以 101222211111()21212111x p x p x t L p p p p p -⎡⎤=--++⎢⎥-++++⎣⎦01111()cos ()sin 222t e x t x t =+-+- 7. 求解01"(0),'(0)tx x e x x x x ⎧-=⎨==⎩解 对方程两边施以Laplace 变换得 [][]"t L x L x L e ⎡⎤-=⎣⎦[][]201'(0)1p L x p xx L x p ---=- []201111p L x px x p ⎡⎤-=++⎣⎦- 解得 []2111()2(1)4(1)4(1)L x t p p p =-+--+ 012211x p x p p ++-- []101111()(())244t t t x t L L x t te e e x cht x sht --==-+++8. 求解"'2"'4(0)1,'(0)2,"(0)2x x x x x x --=⎧⎨===-⎩解 对方程两边施行Laplace 变换,并注三个初始条件,则有[][][][]"'2"'4L x L x L x L -+=[][]322(0)'()"(0)2(0)'(0)p x p x px x x p L x px x ⎡⎤------+⎣⎦[]4(0)L x x p-=[][][]3224222241p L x p p p L x p pL x p--+-+++-=[]224(1)5p p L x p p-=+- 解得 []222254()(1)(1)(1)p L x t p p p p p =-+--- 23421p p p =+-- 所以 []1()()342tx t L L x t t e -==+-9. 求解21"'2(0)'(0)"(0)0t x x t e x x x ⎧+=⎪⎨⎪===⎩ 解 对方程两边施以Laplace 变换并利用初始条件有 [][]21"'2tL x L x L t e ⎡⎤+=⎢⎥⎣⎦[][]3221(0)'(0)"(0)(1)p L x p x px x L x p ---+=-解得 []331()(1)(1)L x t p p =-+- 当331231,,ii p p e p e ππ-=-==是一阶极点,p=1是三阶极点,由留数计算公式:22331111Re ()lim 2(1)(1)ptpt p p d s F p e e dp p p →=⎡⎤⎡⎤=⎢⎥⎣⎦!+-⎣⎦2133448t t tt e te e =-+31311(1)Re ()|(1)24ptptt p p e p s F p e e p -=-=--⎡⎤==-⎣⎦+3332(1)Re ()|3i i pt ptp e p e e p s F p e p ππ==-⎡⎤==⎣⎦3Re ()iptp es F p e π-=⎡⎤=⎣⎦所以221331()44824t t t t t x t t e te e e -=-+--21cos 32te10. 求解3''21'4'30(0)(0)0x y x x y y x y ++=⎧⎪++=⎨⎪==⎩解 对方程组两边施行Laplace 变换,并设[][](),(),X L x t Y L y t ==得 1(32)(43)0p X pY p pX p Y ⎧++=⎪⎨⎪++=⎩解得 221111111765(116)5(1)431133(11176)25(1)10(116)Y p p p p p X p p p p p p --⎧==+⎪++++⎪⎨+⎪==--⎪++++⎩所以 [][]61116111113()251011()55t t t tx t L X e e y t L Y e e ------⎧==--⎪⎪⎨⎪==-+⎪⎩11. 求解0sin ()sin()()ta t G t t z G z dz =--⎰,a 为常数。
1. 求下列函数的拉式变换。
(1) t t cos 2sin +
(2)
()t e t 2sin - (3)
()[]t e t βα--cos 1 (4)
()t e t 732--δ (5)
()t Ω2cos (6)
()()t e t ωαcos +- (7) ()t
t αsin 2. 求下列函数的拉式变换,注意阶跃函数的跳变时间。
(1)
()()()t u e t f t 2--= (2)
()()()12sin -⋅=t u t t f (3) ()()()()[]211----=t u u u t t f
3. 求下列函数的拉普拉斯逆变换。
(1) ()
512+s s (2) ()()
243+++s s s (3) 11
12++s (4)
()RCs s RCs +-11 (5) ()()()
2133+++s s s (6)
22K s A + (7) ()(
)[]22βα+++s a s s (8) ()
142+-s s e s
(9) ⎪⎭
⎫ ⎝⎛+9ln s s 4. 分别求下列函数的逆变换的初值和终值。
(1) ()()()
526+++s s s (2)
()()()2132+++s s s 5. 如图1所示电路,0=t 以前,开关S 闭合,已进入稳定状态;0=t 时,开关打开,求
()t v r 并讨论R 对波形的影响。
6. 电路如图2所示,0=t 以前开关位于”“1,电路以进入稳定状态,0=t 时开关从”
“1倒向”
“2,求电流()t i 的表示式。
7. 电路如图3所示,0=t 以前电路原件无储能,0=t 时开关闭合,求电压()t v 2的表示
式和波形。
8. 激励信号()t e 波形如图()a 4所示电路如图()b 4所示,起始时刻L 中无储能,求()t v 2得
表示式和波形。
9. 电路如图5所示,注意图中()t Kv 2是受控源,试求
(1) 系统函数()()()
s V s V s H 13=; (2) 若2=K ,求冲激响应。
10. 将连续信号()t f 以时间间隔T 进行冲激抽样得到
()()()()()∑∞
=-==0
,n T T s nT t t t t f t f δδδ,求:
(1) 抽样信号的拉氏变换()[]t f s L
; (2) 若()()t u e t f t α-=,求()[]t f s L 。
11. 在图6所示网络中,Ω===10,1.0,2R F C H L 。
(1) 写出电压转移函数()()()
s E s V s H 2=; (2) 画出s 平面零、极点分布;
(3) 求冲激响应、阶跃响应。
12. 如图7所示电路,
(1) 若初始无储能,信号源为()t i ,为求()t i 1(零状态响应),列出转移函数()s H ;
(2) 若初始状态以()01i ,()02v 表示(都不等于0),但()0=t i (开路),求()t i 1(零
输入响应)。
13. 已知网络函数的零、极点分布如图8所示,此外()5=∞H ,写出网络函数表示式()s H 。
14. 已知网络函数()s H 的极点位于3-=s 处,零点在α-=s ,且()1=∞H 。
此网络的阶
跃响应中,包含一项为t e K 31-。
若α从0变到5,讨论相应的1K 如何随之改变。
15. 如图9反馈系统,回答下列各问:
(1) 写出()()()s V s V s H 12=
; (2) K 满足什么条件时系统稳定?
(3) 在临界稳定条件下,求系统冲激响应()t h 。
16. 已知信号表示式为
()()()t u e t u e t f t t αα-+-=
式中0>α,试求()t f 的双边拉氏变换,给出收敛域。