第六章61从实际问题到方程
- 格式:doc
- 大小:31.00 KB
- 文档页数:2
从算式到方程教学教案分析一、教学目标1. 让学生理解算式和方程的区别,并能正确区分它们。
2. 培养学生从实际问题中抽象出方程的能力。
3. 引导学生掌握解一元一次方程的方法,并能应用于实际问题。
二、教学内容1. 算式和方程的定义及区别。
2. 方程的解法及应用。
3. 实际问题转化为方程的过程。
三、教学重点与难点1. 教学重点:算式和方程的定义,方程的解法及应用。
2. 教学难点:实际问题转化为方程的过程,解一元一次方程的方法。
四、教学方法1. 采用讲授法,讲解算式和方程的概念及区别。
2. 采用案例分析法,引导学生从实际问题中抽象出方程。
3. 采用练习法,让学生通过解方程巩固所学知识。
五、教学过程1. 导入:通过生活中的实例,引导学生认识算式和方程。
2. 新课讲解:讲解算式和方程的定义,举例说明它们的区别。
3. 案例分析:分析实际问题,引导学生从中抽象出方程。
4. 方程解法讲解:讲解解一元一次方程的方法,并通过例题演示。
5. 课堂练习:布置练习题,让学生巩固所学知识。
6. 总结:回顾本节课所学内容,强调算式和方程的区别及解方程的方法。
7. 作业布置:布置课后作业,让学生进一步巩固所学知识。
8. 课后反思:对课堂教学进行总结,针对学生的掌握情况,调整教学策略。
六、教学评价1. 评价学生对算式和方程概念的理解程度。
2. 评价学生是否能从实际问题中抽象出方程。
3. 评价学生是否能正确解一元一次方程并应用于实际问题。
七、教学拓展1. 引导学生思考:方程在实际生活中的应用。
2. 介绍一元二次方程及其解法,为学生后续学习打下基础。
八、教学资源1. PPT课件:展示算式、方程的定义及解方程的过程。
2. 练习题:提供不同难度的练习题,巩固所学知识。
3. 实际问题案例:用于引导学生从实际问题中抽象出方程。
九、教学进度安排1. 第1-2课时:讲解算式和方程的定义及区别。
2. 第3-4课时:分析实际问题,引导学生抽象出方程。
从算式到方程—教学设计及点评一、教学设计1.教学目标:(1)知识目标:了解算式和方程的概念,认识算式和方程之间的关系。
(2)能力目标:能够通过给定的算式写出相应的方程,并能够根据方程解决问题。
(3)情感目标:培养学生的数学思维能力和问题解决能力,增强他们对数学的兴趣和信心。
2.教学重点:(1)理解算式和方程的定义。
(2)掌握从算式到方程的转换方法。
(3)理解方程的意义和用途。
3.教学难点:(1)理解方程的意义和用途。
(2)掌握根据给定的算式写出方程的方法。
4.教学过程:步骤一:导入新课(1)引入问题:有一些运算式,例如:"5+2=7",你能发现其中的规律吗?(2)学生回答并解释规律:等号左边的算式和等号右边的值相等。
(3)教师引导学生总结:这种形式的式子叫做算式,其中有一个等号,左右两边相等。
步骤二:引入方程的概念(1)引导学生思考问题:如果我们把算式中的一些数用一个字母表示,如"5+x=7",这种式子叫什么?(2)学生回答并解释:这种式子叫做方程,字母代表的是一个未知数。
(3)教师解释:方程和算式的结构非常相似,只不过其中有一个未知数,我们可以通过解方程来求出未知数的值。
步骤三:从算式到方程(1)教师出示一些算式,并要求学生根据算式写出相应的方程。
(2)学生通过思考和分析,用未知数表示算式中的一些数,并写出方程。
(3)学生互相交流并对答案进行讨论。
步骤四:解决问题(1)教师给出一些实际问题,并要求学生用方程去解决问题。
(2)学生根据问题提供的信息写出方程,然后解方程求出未知数的值。
(3)学生互相交流并对答案进行讨论。
步骤五:巩固练习(1)教师出示一些练习题,让学生自己用方程来解决。
(2)学生独立完成练习,并互相交换答案进行对比。
(3)教师进行讲评,梳理学生解题思路和方法。
步骤六:总结和拓展(1)教师引导学生总结今天学习的内容:什么是方程?怎样从算式到方程?(2)教师拓展讲解方程的更复杂形式,如多项式方程、二元一次方程等。
§6.1 从实际问题到方程科目:七年级数学备课人:王淑轶【教学目标】1.能判断一个数是不是某个方程的解,掌握用尝试检验方法求方程的解的思想方法;2.会列一元一次方程解决一些简单的应用题;3.初步认识方程与现实问题的联系,感受数学的应用价值,激发数学学习兴趣。
【教学重点】能判断一个数是不是某个方程的解,会列一元一次方程解决一些简单的应用题。
【教学难点】会列一元一次方程解决一些简单的应用题。
【教学过程】一、复习回顾,导入新课1.列方程解下面的应用题:一本笔记本1.2元。
小红有6元钱,那么她最多能买到多少本这样的笔记本呢?解:设小红能买到x本笔记本,根据题意得:1.2x=6解得:x=5答:小红能买到5本这样的笔记本。
2.结合上题的解答,说说列方程解应用题的一般步骤是什么?有哪些应当注意的问题?二、自主探索1.阅读课本1页“第6章导图”内容,试分别用算术法和方程法解答:一队师生共328人,乘车外出旅游,已有校车可乘64人,如果租用客车,每辆可乘44人,那么还要租多少辆客车?算术法:方程法:(328-64)÷44 解:设需要租用x辆客车,根据题意得:=264÷44 44x+64=328=6(辆) 解得:x=6答:还要租用6辆客车。
答:还要租用6辆客车。
2.阅读课本2页~3页“问题2”内容,完成下列问题:(1)小敏同学得出答案使用的是什么方法?他的答案正确吗?小敏同学是用“尝试、检验”的方法找出方程的解的。
他的答案是正确的。
(2)你能列方程解答张老师的这道题吗?试一试。
三、合作交流1.你用方程法得到的答案和小敏的答案一样吗?你有什么发现?2.讨论:如果未知数可能取到的数值较多,或者不一定是整数,该从何试起?如果试验根本无法入手又该怎么办呢?四、实践应用1.课本3页“习题6.1”第1~3题。
2.补充练习:(1)检验下列方程后面括号内所列各数是否为相应方程的解。
(a)x-3(x+2)=6+x (x=3,x=-4)(b)2y(y-1)=3 (y=-1,y=32) (c)5(x-1)(x-2)=0 (x=0,x=1,x=2)(2)根据题意,列出相应的方程,不必求解。
华师大版七下数学6.1《从实际问题到方程》教学设计一. 教材分析华师大版七下数学6.1《从实际问题到方程》这一节主要介绍了方程的概念和实际问题与方程的联系。
通过本节课的学习,学生能够理解方程的定义,掌握一元一次方程的解法,并能够将实际问题转化为方程进行求解。
二. 学情分析学生在学习本节课之前,已经掌握了有理数的运算和一元一次不等式的解法,但对于方程的概念和实际问题与方程的联系可能还不够清晰。
因此,在教学过程中,需要引导学生从实际问题中发现方程,理解方程的定义,并掌握一元一次方程的解法。
三. 教学目标1.理解方程的概念,能够识别一元一次方程。
2.掌握一元一次方程的解法,能够将实际问题转化为方程进行求解。
3.培养学生的数学思维能力和问题解决能力。
四. 教学重难点1.重难点:一元一次方程的解法和实际问题与方程的联系。
2.难点:理解方程的概念,将实际问题转化为方程。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生从实际问题中发现方程。
2.案例教学法:通过分析典型案例,让学生理解实际问题与方程的联系,掌握一元一次方程的解法。
3.小组合作学习:引导学生进行小组讨论和合作,培养学生的团队合作能力和问题解决能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示典型案例和实际问题。
2.教学案例:准备一些相关的实际问题,用于引导学生发现方程和练习解方程。
3.练习题:准备一些练习题,用于巩固学生对一元一次方程的解法的掌握。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,如购物时找零问题、速度和时间问题等,引导学生从实际问题中发现方程,并激发学生的学习兴趣。
2.呈现(10分钟)通过PPT呈现方程的定义和一元一次方程的解法,让学生了解方程的基本概念和求解方法。
3.操练(10分钟)让学生分组讨论,每组选择一个实际问题,尝试将其转化为方程,并运用一元一次方程的解法进行求解。
教师巡回指导,给予学生必要的帮助和提示。
从实际问题到方程汇总引言在数学中,我们经常需要通过实际问题来建立数学方程,以解决问题。
建立数学方程需要对实际问题进行思考和分析,找到问题的关键点,从而将其转化为符合数学模型的形式。
本文将通过具体的实例,探讨如何将实际问题转化为数学方程的过程,并对常见的数学方程进行汇总。
实例分析例1假设一个人想要每周节省100元,他有两个选择:不吃肉或减少购物。
如果他选择后者,他需要知道节省多少钱才能达到目标。
如果他平时每周消费600元,并且他能节省30%的钱,那么他需要节省多少钱才能达到目标?对于这个问题,我们需要找到关键点:•原始每周消费600元•节省30%•目标每周节省100元假设他需要节省x元才能达到目标,那么根据题意,我们可以列出以下方程:600 * (1 - 0.3) - x = 500通过将原始消费减去节省的钱来计算每周实际花费,并将其与目标进行比较,可以得到上述方程。
通过解方程,可以得到x为280元,即他需要节省280元才能达到目标。
例2假设一辆汽车油箱的容积为50升,已经使用了40升的油,每升油能够行驶10公里。
同时,行驶40公里需要1个小时,那么这辆汽车还能行驶多少公里?对于这个问题,我们需要找到关键点:•油箱容积为50升•已经使用了40升的油•每升油能够行驶10公里•行驶40公里需要1个小时假设这辆汽车还能行驶x公里,那么根据题意,我们可以列出以下方程:(50 - 40) * 10 = x通过将剩余油量转化为能够行驶的公里数,并减去已经行驶的40公里,可以得到上述方程。
通过解方程,可以得到x为100公里,即这辆汽车还能行驶100公里。
常见数学方程一次方程一次方程是形如ax + b = 0的方程,其中a和b为常数。
解一次方程的步骤是将方程转化为x = -b/a的形式。
二次方程二次方程是形如ax^2 + bx + c = 0的方程,其中a、b和c为常数,且a不等于0。
解二次方程的步骤是使用公式x = (-b ± sqrt(b^2 - 4ac))/2a计算出解。
教学计划:《从算式到方程》一、教学目标1.知识与技能:学生能够理解方程的概念,掌握从具体问题的算式表达转化为方程表达的方法,初步学会解一元一次方程。
2.过程与方法:通过实例分析,引导学生经历从实际问题抽象出数学问题的过程,培养学生的数学建模能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生运用数学知识解决实际问题的意识,以及探索未知、追求真理的科学态度。
二、教学重点和难点●重点:方程的概念、从算式到方程的转化过程、一元一次方程的解法。
●难点:如何从实际问题中准确抽象出方程,以及如何设置恰当的未知数。
三、教学过程1. 引入新课(5分钟)●情境导入:通过一个贴近学生生活的实际问题(如购物找零、路程速度时间关系等),引出传统算式解法的局限性,激发学生思考更高效的解题方式。
●概念引入:介绍方程的概念,强调方程是描述相等关系的数学语言,是解决实际问题的一种有力工具。
●目标明确:阐述本节课的学习目标,让学生明确学习方向。
2. 新知讲授(15分钟)●方程构建:以实际问题为例,引导学生逐步将文字信息转化为数学符号,设置未知数,构建方程。
强调设置未知数的技巧和方法。
●方程解析:详细讲解方程的结构,包括未知数、系数、常数项等,以及方程与算式的主要区别。
●解方程示例:选取简单的一元一次方程作为示例,展示解方程的基本步骤和注意事项。
3. 互动探究(15分钟)●小组合作:将学生分组,每组分配一个实际问题,要求他们合作讨论,尝试将问题转化为方程,并初步求解。
●成果展示:各小组选派代表展示他们的方程构建过程和求解结果,其他同学和老师进行评价和反馈。
●问题解决:针对小组展示中出现的问题和疑惑,进行集体讨论,共同解决。
4. 巩固练习(10分钟)●分层练习:设计不同难度的练习题,包括直接给出条件求方程的题目、根据实际问题构建方程并求解的题目等,以满足不同层次学生的需求。
●即时反馈:学生完成练习后,教师巡视指导,及时发现并纠正学生的错误。
初中数学《从算式到方程》教案设计范文一、教学目标1.知识与技能:a)理解方程的概念,掌握方程的书写方法。
b)学会从实际问题中抽象出方程,解决实际问题。
c)掌握方程的解法,包括一元一次方程和简单的一元二次方程。
2.过程与方法:a)通过观察、分析、归纳,培养学生的逻辑思维能力。
b)通过小组讨论,培养学生的合作能力。
3.情感态度与价值观:a)培养学生对数学的兴趣,增强学习的积极性。
b)培养学生独立解决问题的能力,提高自信心。
二、教学重点与难点1.教学重点:a)方程的概念及其书写方法。
b)方程的解法。
2.教学难点:a)从实际问题中抽象出方程。
b)方程的解法,尤其是二次方程。
三、教学过程1.导入a)引导学生回顾算式的概念,如加法、减法、乘法、除法等。
b)提问:算式与方程有什么区别?2.知识讲解a)介绍方程的定义:含有未知数的等式。
b)举例说明方程的书写方法,如2x+3=7。
c)讲解方程的解法,如一元一次方程、一元二次方程等。
3.实例分析a)分析教材中的实例,如“小明的年龄是妈妈的1/3,妈妈的年龄是多少?”b)引导学生从实际问题中抽象出方程,如设妈妈的年龄为x,则小明的年龄为1/3x。
c)指导学生用方程解决问题。
4.练习与讨论a)让学生独立完成教材中的练习题,如“已知一个数的平方减去这个数等于2,求这个数。
”b)组织学生进行小组讨论,交流解题过程和心得。
b)提问:方程在实际生活中有哪些应用?c)拓展:介绍二元一次方程、三元一次方程等。
6.作业布置a)布置教材中的课后习题,如一元一次方程、一元二次方程的练习题。
b)鼓励学生从生活中发现方程的应用,记录下来并与同学分享。
四、教学反思1.课堂效果:a)观察学生在课堂上的反应,了解他们对方程的理解程度。
b)反思教学过程中的不足,如讲解是否清晰、例题是否典型等。
2.学生反馈:a)收集学生的反馈意见,了解他们对课堂内容的掌握程度。
b)根据反馈调整教学方法,提高教学效果。