七年级数学下册《从实际问题到方程》知识点总结
- 格式:docx
- 大小:18.03 KB
- 文档页数:2
七年级数学方程知识点汇总数学方程在七年级的学习中是非常重要的一个知识点,它是整个数学学习的基础。
各种数学问题的解法都需要运用方程知识点。
因此,七年级的学生必须在方程上花费更多的时间和精力才能更好地掌握这个知识点。
本文将对七年级数学方程的相关知识点进行汇总,帮助学生更好地理解和掌握知识。
一、方程的基本概念1. 什么是方程方程是表示量与量之间相等关系的式子,其中至少有一个未知数。
2. 方程的三要素方程有三要素:未知数、已知量和等号。
3. 方程的分类方程可分为一元方程(只有一个未知数)和二元方程(含有两个未知数)。
二、一元一次方程1. 一元一次方程的基本形式一元一次方程的基本形式为ax+b=0,其中a,b为已知数,x为未知数。
2. 方程的解的概念及解法解方程就是求出使方程成立的未知数的值。
解一元一次方程的方法有加减法、乘除法及倒数法等。
3. 解方程的步骤解一元一次方程的步骤包括消元、移项、化简和求解。
三、一元一次方程的应用1. 解决实际问题通过解一元一次方程,可以解决实际问题。
如利用速度等比例关系,可以通过解一元一次方程求出时间、距离等未知量。
2. 统计学问题解一元一次方程还可以用于统计学问题。
如求出平均数、中位数等时,可以通过解一元一次方程来求出未知数值。
四、一元二次方程1. 一元二次方程的基本形式一元二次方程的基本形式为ax²+bx+c=0,其中a,b,c为已知数,a≠0,x为未知数。
2. 解一元二次方程解一元二次方程的方法有因式分解法、配方法、公式法等。
其中,配方法和公式法是最常见的解法。
3. 一元二次方程的根的表示一元二次方程的根又称为解。
当方程有实数根时,根可以表示成实数或是无理数的形式。
五、不等式方程1. 不等式的概念不等式是表示大小关系的式子,它不同于方程的“等于”。
2. 不等式方程的解法解不等式方程也有多种方法,如加减法、乘除法、代入法、排除法等。
3. 不等式方程应用解不等式方程也可以解决实际问题。
七年级下册方程知识点归纳总结七年级下册方程知识点归纳总结方程是数学中重要的概念之一,它可以帮助我们解决各种问题。
在七年级下册的学习中,我们学习了不少关于方程的知识,下面将对这些知识进行归纳总结。
1. 方程的基本概念方程是一个等式,其中含有一个或多个未知数。
求解方程就是要找出使得等式成立的未知数的值。
方程的解是满足方程的未知数值。
一个方程可以有一个解、多个解或无解。
2. 解一元一次方程解一元一次方程的基本思路是通过逆运算,将未知数从等式中解出。
例如,对于方程2x + 5 = 15,我们可以先将等式两边都减去5,得到2x = 10,再将等式两边都除以2,得到x = 5,这个值就是方程的解。
3. 解含有括号的一元一次方程当方程中含有括号时,我们需要先利用分配律将括号展开,然后再解方程。
例如,对于方程2(x + 3) = 10,我们可以先将括号展开得到2x + 6 = 10,然后再解方程。
4. 解含有分数的一元一次方程当方程中含有分数时,我们需要对方程进行整理,使得方程中的未知数系数化为整数。
例如,对于方程2/3x - 1/4 = 1/6,我们可以通过寻找公倍数的方法,让方程中的系数分子化为整数。
然后可以将该方程转化为整数系数方程进行求解。
5. 解含两个未知数的方程当方程中含有两个未知数时,我们需要先确定一个未知数的值,然后将其代入方程中去求解另一个未知数。
例如,对于方程x+ y = 5,2x - y = 1,我们可以先将第一个方程中的x解出,得到x = 5 - y,然后将此值代入第二个方程中,得到2(5 - y) - y = 1,然后解这个方程得到y的值,再将y的值代入第一个方程中,求解x的值。
6. 应用方程解决实际问题方程不仅仅是一种数学概念,它还可以帮助我们解决实际生活中的问题。
通过将实际问题转化为方程,我们可以利用数学的方法来求解。
例如,一个矩形的长是宽的两倍,如果周长是18厘米,我们可以列出方程2(x + 2x) = 18,然后解方程得到x的值,再求解长和宽的值。
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】实际问题与二元一次方程组(一)(基础)知识讲解责编:杜少波【学习目标】1.以含有多个未知数的实际问题为背景,经历“分析数量关系,设未知数,列方程组,解方程组和检验结果”的过程,体会方程组是刻画现实世界中含有多个未知数问题的数学模型;2. 熟练掌握用方程组解决和差倍分,配套,工程等实际问题.【要点梳理】要点一、常见的一些等量关系(一) 1.和差倍分问题:增长量=原有量×增长率 较大量=较小量+多余量,总量=倍数×倍量. 2.产品配套问题:解这类问题的基本等量关系是:加工总量成比例.3.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量.4.利润问题:商品利润=商品售价-商品进价,=100% 利润利润率进价.要点二、实际问题与二元一次方程组 1.列方程组解应用题的基本思想列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系.一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量:②同类量的单位要统一;③方程两边的数要相等.2.列二元一次方程组解应用题的一般步骤: 设:用两个字母表示问题中的两个未知数;列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组); 解:解方程组,求出未知数的值;验:检验求得的值是否正确和符合实际情形; 答:写出答案. 要点诠释:(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去; (2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.【典型例题】类型一、和差倍分问题1.(2016•长春二模)电子商务的快速发展逐步改变了人们的生活方式,网购已悄然进入千家万户.李阿姨在淘宝网上花220元买了1个茶壶和10个茶杯,已知茶壶的单价比茶杯的单价的4倍还多10元.请问茶壶和茶杯的单价分别是多少元?【思路点拨】设茶壶的单价为x 元,茶杯的单价为y 元,根据题意可得,1个茶壶和10个茶杯共花去220元,茶壶的单价比茶杯的单价的4倍还多10元,据此列方程组求解. 【答案与解析】解:设茶壶的单价为x 元,茶杯的单价为y 元,由题意得,,解得:.答:茶壶的单价为70元,茶杯的单价为15元.【总结升华】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.举一反三: 【变式】(2015•茂名模拟)根据如图提供的信息,可知一个热水瓶的价格是( )A .7元B .35元C .45元D .50元 【答案】C .解:设水壶单价为x 元,杯子单价为y 元, 则有 ,解得.答:一个热水瓶的价格是45元. 类型二、配套问题2. 某服装厂生产一批某种款式的秋装,已知每2米的某种布料可做上衣的衣身3个或衣袖5只. 现计划用132米这种布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套?【思路点拨】本题的第一个相等关系比较容易得出:衣身、衣袖所用布料的和为132米;第二个相等关系的得出要弄清一整件衣服是怎么样配套的,即衣袖的数量等于衣身的数量的2倍(注意:别把2倍的关系写反了).【答案与解析】解:设用x 米布料做衣身,用y 米布料做衣袖才能使衣身和衣袖恰好配套.根据题意,列方程组得⎪⎩⎪⎨⎧=⨯=+y x y x 25223132解方程组得⎩⎨⎧==7260y x答:用60米布料做衣身,用72米布料做衣袖才能使做的衣身和衣袖恰好配套.【总结升华】生产中的配套问题很多,如螺钉和螺母的配套、盒身与盒底的配套、桌面与桌腿的配套、衣身与衣袖的配套等. 各种配套都有数量比例,依次设未知数,用未知数可把它们之间的数量关系表示出来,从而得到方程组,使问题得以解决,确定等量关系是解题的关键.【:实际问题与二元一次方程组(一)409143 例2】 举一反三:【变式】某家具厂生产一种方桌,设计时13m 的木材可做50个桌面或300条桌腿.现有103m 的木材,怎样分配桌面和桌腿使用的木材,才能使桌面和桌腿刚好配套,并指出可生产多少张方桌?(提示:一张方桌有一个桌面,4条桌腿). 【答案】解:设有3xm 的木材生产桌面,3ym 的木材生产桌腿,由题意得,10300504x y y x +=⎧⎪⎨=⎪⎩ , 64x y =⎧∴⎨=⎩.∴方桌有50x =300(张).答:有63m 的木材生产桌面,43m 的木材生产桌腿,可生产出300张方桌. 类型三、工程问题3.一批机器零件共840个,如果甲先做4天,乙加入合做,那么再做8天才能完成;如果乙先做4天,甲加入合做,那么再做9天才能完成,问:两人每天各做多少个零件? 【思路点拨】本例由分析知,有两个相等关系:(1)甲4天的工作量+甲乙合做8天的工作量=工作总量;(2)乙4天的工作量+甲、乙合做9天的工作量=工作总量,根据这两个相等关系可列方程求解. 【答案与解析】解:设甲每天做x 个机器零件,乙每天做y 个机器零件.根据题意,得(48)88409(49)840x y x y ++=⎧⎨++=⎩,解之,得5030x y =⎧⎨=⎩.答:甲、乙两人每天做机器零件分别为50个、30个.【总结升华】解答这类问题的基本关系式是:工作量=工作效率×工作时间.工程问题一般分为两类:一类是一般的工程问题,一类是工作总量为1的工程问题. 类型四、利润问题4. (2015•曲靖)某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示: 类别/单价 成本价 销售价(元/箱) 甲 24 36 乙 33 48(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元? 【思路点拨】(1)设商场购进甲种矿泉水x 箱,购进乙种矿泉水y 箱,根据投入13800元资金购进甲、乙两种矿泉水共500箱,列出方程组解答即可; (2)总利润=甲的利润+乙的利润. 【答案与解析】 解:(1)设商场购进甲种矿泉水x 箱,购进乙种矿泉水y 箱,由题意得,解得:.答:商场购进甲种矿泉水300箱,购进乙种矿泉水200箱. (2)300×(36﹣24)+200×(48﹣33) =3600+3000 =6600(元).答:该商场共获得利润6600元.【总结升华】本题考查了二元一次方程组的实际应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解. 【:实际问题与二元一次方程组(一)409143 例6】举一反三:【变式】王师傅下岗后开了一家小商店,上周他购进甲乙两种商品共50件,甲种商品的进价是每件35元,利润率是20%,乙种商品的进价是每件20元,利润率是15%,共获利278元,你知道王师傅分别购进甲乙两种商品各多少件吗? 【答案】解:设王师傅分别购进甲、乙两种商品x 件和y 件,则503520%2015%278x y x y +=⎧⎨⨯+⨯=⎩ 解得:3218x y =⎧⎨=⎩答:王师傅分别购进甲乙两种商品32件与18件.初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
华东师版七年级数学下教学工作总结2.数学七年级下华东师范大学出版社目录概论第6章一元一次方程6.1 从实际问题到方程6.2 解一元一次方程1.等式的性质与方程的简单变形2.解一元一次方程阅读材料丢番图的墓志铭与方程6.3 实践与探索阅读材料2=3吗小结复习题第7章二元一次方程组7.1 二元一次方程组和它的解7.2 二元一次方程组的解法*7.3 三元一次方程组及其解法7.3 实践与探索阅读材料鸡兔同笼小结复习题第8章一元一次不等式8.1 认识不等式8.2 解一元一次不等式1.不等式的解集2.不等式的简单变形3.解一元一次不等式8.3 一元一次不等式组阅读材料等号与不等号的由来小结复习题综合与实践球赛出线问题第9章多边形9.1 三角形1.认识三角形2.三角形的内角和与外角和3.三角形的三边关系9.2 多边形的内角和与外角和9.3 用正多边形铺设地面1.用相同的正多边形2.用多种正多边形阅读材料多姿多彩的图案小结复习题第10章轴对称、平移与旋转10.1 轴对称1.生活中的轴对称阅读材料剪五角星2.轴对称的再认识3.画轴对称图形4.设计轴对称图形阅读材料Times and Dates 10.2 平移1.图形的平移2.平移的特征10.3 旋转1.图形的旋转2.旋转的特征3.旋转对称图形阅读材料古建筑中的旋转对称图形——从敦煌洞窟到欧洲教堂10.4 中心对称10.5 图形的全等小结复习题综合与实践图案设计数学实验附图方格图格点图初一(七年级)下册数学班教学总结本学期,本人担任七年级166班数学学科的教学工作。
一学期来,本人以学校及各处组工作计划为指导;以加强师德师风建设,提高师德水平为重点,以提高教育教学成绩为中心,以深化课改实验工作为动力,认真履行岗位职责,较好地完成了工作目标任务,现将一学期来的工作总结如下:一、加强学习,努力提高自身素质一方面,认真学习教师职业道德规范、“三个代表”重要思想,不断提高自己的道德修养和政治理论水平;另一方面,认真学习新课改理论,努力提高业务能力,参加自学考试,努力提高自己的学历水平。
一、方程的概念及解法1.方程的定义:在等号两边含有未知数的式子。
2.方程的解:使方程成立的未知数的值。
3.方程的解法:a.逆运算法:通过逆向运算来求解方程。
b.移项法:通过移动项的位置来求解方程。
c.消元法:通过等式变形,将方程变为更简单的形式,再求解。
二、一元一次方程1.一元一次方程的定义:方程中只有一个未知数,并且未知数的最高次数为12.一元一次方程的解法:a.逆运算法:通过逆向运算,将未知数单独求解。
b.移项法:将未知数的项移到等号一边,常数项移到另一边,使方程变为等价方程。
三、一元二次方程1.一元二次方程的定义:方程中只有一个未知数,并且未知数的最高次数为22. 一元二次方程的标准形式:ax² + bx + c = 0。
3.一元二次方程的解法:a.因式分解法:将方程进行因式分解,使得两个括号中的内容相等。
b.完全平方法:将方程利用完全平方式变为平方形式。
c.配方法:通过配方法将方程变为平方形式后,利用公式求解。
d.根的性质法:通过根的性质进行求解,如求和、求积。
四、分式方程1.分式方程的定义:方程中含有分式,且未知数出现在分母或分子中。
2.分式方程的解法:a.求分母公倍数,将方程两边的分数化为通分后的形式,再进行等式变形求解。
b.消分母法:将方程两边的分数化为分母为1的形式,再进行等式变形求解。
五、绝对值方程1.绝对值方程的定义:方程中含有绝对值符号,未知数出现在绝对值内或外。
2.绝对值方程的解法:a.分类讨论法:根据绝对值的取正值和取负值分别讨论。
b.移项分组法:通过移项和分组,将方程变为绝对值为常数的形式。
六、方程组1.方程组的定义:由若干个方程组成的集合。
2.方程组的解法:a.代入法:将其中一个方程的解代入另一个方程,依次求解。
b.消元法:通过加减乘除等运算将方程组化简为更简单的形式,再求解。
c.矩阵法:通过矩阵的计算求解方程组。
d.图解法:将方程组转化为坐标系中的图形,通过图形的交点求解。
华师大版七下数学6.1《从实际问题到方程》教学设计一. 教材分析华师大版七下数学6.1《从实际问题到方程》这一节主要介绍了方程的概念和实际问题与方程的联系。
通过本节课的学习,学生能够理解方程的定义,掌握一元一次方程的解法,并能够将实际问题转化为方程进行求解。
二. 学情分析学生在学习本节课之前,已经掌握了有理数的运算和一元一次不等式的解法,但对于方程的概念和实际问题与方程的联系可能还不够清晰。
因此,在教学过程中,需要引导学生从实际问题中发现方程,理解方程的定义,并掌握一元一次方程的解法。
三. 教学目标1.理解方程的概念,能够识别一元一次方程。
2.掌握一元一次方程的解法,能够将实际问题转化为方程进行求解。
3.培养学生的数学思维能力和问题解决能力。
四. 教学重难点1.重难点:一元一次方程的解法和实际问题与方程的联系。
2.难点:理解方程的概念,将实际问题转化为方程。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生从实际问题中发现方程。
2.案例教学法:通过分析典型案例,让学生理解实际问题与方程的联系,掌握一元一次方程的解法。
3.小组合作学习:引导学生进行小组讨论和合作,培养学生的团队合作能力和问题解决能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示典型案例和实际问题。
2.教学案例:准备一些相关的实际问题,用于引导学生发现方程和练习解方程。
3.练习题:准备一些练习题,用于巩固学生对一元一次方程的解法的掌握。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,如购物时找零问题、速度和时间问题等,引导学生从实际问题中发现方程,并激发学生的学习兴趣。
2.呈现(10分钟)通过PPT呈现方程的定义和一元一次方程的解法,让学生了解方程的基本概念和求解方法。
3.操练(10分钟)让学生分组讨论,每组选择一个实际问题,尝试将其转化为方程,并运用一元一次方程的解法进行求解。
教师巡回指导,给予学生必要的帮助和提示。
七年级数学下册《从实际问题到方程》知
识点总结
七年级数学下册《从实际问题到方程》知识点总结
【主体知识归纳】
1.方程与现实世界有着密切的关系,许多实际问题既可
以用算术解法来解,也可以列方程来解,但列方程解与
算术解法在分析数量关系上是有区别的.列方程解通过设元后,在思维和列式上较算术解法有着更直接、更明了
的优点.
2.要检验一个数是不是方程的解,只需将这个数代入方
程的左、右两边,能使方程左、右两边的值相等的数是
方程的解;不能使方程左、右两边的值相等的数就不是方程的解.
3.让学生编题,可以培养学生知识的综合应用能力,也
能培养学生提出问题、解决问题的能力。
【基础知识精讲】
1.主动参与学习活动,尝试用自己的方式去解决问题,
发表自己的看法.课后要根据实际情况,适当增减、调整一些必要的基础知识,增强学习兴趣和信心.
2.选择适当的问题自己试一试,并知道通过试验的方法
得出方程解的过程,也是一种基本的数学思想方法。
3.(1)等式和方程:方程是等式,但等式不一定是方程.
方程的两个要素是:①必须是一个等式;②必须含有未知数.
(2)方程的解和解方程:方程的解和解方程中的“解”有不同的含义.“方程的解”中的“解”是一个名词——使方程两边的值相等的未知数的取值;“解方程”中的“解”是一个动词——求方程的解的过程.
(3)方程与问题:方程中的未知数,相当于一个问号“?”,用“?”来代替方程2x+1=5中的“x”,就是
“2×?+1=5”,也就是问题“某数的2倍与1的和等于5,求某数”.
反过来,解答问题时,我们常常把问题变换成方程,通过解方程来求问题的解.
(4)列方程就是根据所给的条件列出一个含有未知数的等式.
从实际问题到方程知识点
应不断加强这种“互译”能力,为列方程解应用题
做好准备.
(5)检验一个数是不是方程的解,就是①将这个数代入方程的左、右两边;②分别计算出方程左、右两边的值;③
依据“能使方程左、右两边值相等的数是方程的解,不
能使方程左、右两边的值相等的数不是方程的解”来检
验。