函数的表示方法一
- 格式:doc
- 大小:58.50 KB
- 文档页数:2
1.2.2 函数的表示方法(一)一 、学习目标1.掌握函数的三种主要表示方法2.能选择恰当的方法表示具体问题中的函数关系3.会画简单函数的图像学习重难点:图像法、列表法、解析法表示函数二 、 学习过程表示函数的方法,常用的有解析法、列表法和图象法三种. ⑴解析法:就是用 表示两个 之间的例如,s=602t ,A=π2r ,S=2rl π,y=a 2x +bx+c(a ≠0),y=2-x (x ≥2)等等都是用解析式表示函数关系的.优点:一是简明、全面地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.中学阶段研究的函数主要是用解析法表示的函数.⑵列表法:就是列出表格来表示两个变量之间的 .例如,某班学生的身高 单位:厘米数学用表中的平方表、平方根表、三角函数表,银行里的利息表,列车时刻表等等都是用列表法来表示函数关系的.公共汽车上的票价表优点:不需要计算就可以直接看出与自变量的值相对应的函数值.⑶图象法:就是用 表示两个变量之间的 关系.例如,气象台应用自动记录器描绘温度随时间变化的曲线,课本中我国人口出生率变化的曲线,工厂的生产图象,股市走向图等都是用图象法表示函数关系的.优点:能直观形象地表示出自变量的变化,相应的函数值变化的趋势,这样使得我们可以通过图象来研究函数的某些性质.三、例题讲解例1某种笔记本每个5元,买 x ∈{1,2,3,4}个笔记本的钱数记为y (元),试写出以x 为自变量的函数y 的解析式,并画出这个函数的图像例2 作出函数y=∣x ∣的图象例3 已知f (x )= 22x x -,求f (1x -)的解析式三 、当堂检测1、画出函数ψ=∣ξ-2∣的图象2、已知f (x )= 21x -, 求f (2x )的解析式3、已知f (x+1)= 223x x ++,求f (x )的解析式。
函数的表示方法(一)1、列表法:通过列出自变量与对应的函数值的表来表达函数关系的方法叫列表法2、图像法:如果图形F 是函数)(x f y =的图像,则图像上的任意点的坐标满足函数的关系式,反之满足函数关系的点都在图像上.这种由图形表示函数的方法叫做图像法.3、如果在函数)(x f y =)(A x ∈中,)(x f 是用代数式来表达的,这种方法叫做解析法4、讨论分别用a x -,a y -分别替换函数)(x f y =中的x ,y 以后函数的图像会发生哪些变化?5、讨论分别用x -,y -分别替换函数)(x f y =中的x ,y 以后函数的图像会发生哪些变化?6、讨论分别用ax ,by 分别替换函数)(x f y =中的x ,y 以后函数的图像会发生哪些变化?7、讨论分别用||x ,|)(|x f 分别替换函数)(x f y =中的x ,)(x f 以后函数的图像会发生哪些变化?8、试作出下列函数的图像: (1)43-+=x x y (2)11-=x y11、若)3()3(x f x f +=-,那么函数)(x f 的图像有何性质? 12、)3(x f y -=与)3(x f +的图像之间有何关系函数的表示方法(二)1.例题:例1.(1)已知一次函数()f x 满足(0)5f =,图象过点(2,1)-,求()f x ;(2)已知二次函数()h x 与x 轴的两交点为(2,0)-,(3,0),且(0)3h =-,求()h x ; (3)已知二次函数()F x ,其图象的顶点是(1,2)-,且经过原点,()F x .例2.(1)已知2()43f x x x =-+,(1)f x +; (2)已知2(1)2f x x x +=-,求()f x .例3.函数在闭区间[1,2]-例4.某人开汽车以60/km h 的速度从A 地到150km 远处的B 地,在B 地停留1h 后,再以50/km h 的速度返回A 地,把汽车离开A 地的路程()x km 表示为时间()t h (从A 地出发是开始)的函数,并画出函数的图象;再把车速v /km h 表示为时间()t h 的函数,并画出函数的图象.例5.已知一个函数的解析式为22y x x =-,它的值域为[1,3]-,这样的函数有多少个?试写出其中两个函数.2.练习:(1)练习:(1)已知2(3)21f x x =-,求()f x ; (答案:22()19f x x =-)(2)已知2211()1f x x xx-=++,求()f x .(答案:2()3f x x =+)3.小结:1.已知函数类型,求函数解析式,常用待定系数法;它的基本步骤是:设出函数的一般式(或顶点式等),代入已知条件,通过解方程(组)确定未知系数; 2.已知()f x 的解析式,求[()]f g x 时,把x 用()g x 代替;已知[()]f g x 的解析式,求()f x 时,常用配凑法或换元法;3.在解决实际问题时,求出函数解析式后,一定要写出定义域。
函数的表示方法有三种在数学中,函数是一种对应关系,它将一个集合中的元素映射到另一个集合中的元素。
函数的表示方法有三种,分别是解析式表示、图像表示和数据表表示。
下面我们将逐一介绍这三种表示方法。
首先,解析式表示是最常见的函数表示方法之一。
通过解析式,我们可以清晰地看到函数的定义和运算规则。
通常,解析式表示为y=f(x),其中f(x)表示函数关于自变量x的表达式,y表示因变量。
例如,y=2x+1就是一个解析式表示的函数,它表示了自变量x和因变量y之间的线性关系。
解析式表示方法简洁明了,能够直观地表达函数的特征,因此在数学中被广泛应用。
其次,图像表示是另一种常见的函数表示方法。
通过图像,我们可以直观地看到函数的走势和特点。
函数的图像通常是在直角坐标系中绘制的,自变量x沿横轴,因变量y沿纵轴。
例如,y=x^2就是一个抛物线函数的图像表示,它展现了自变量和因变量之间的二次关系。
图像表示方法直观生动,能够帮助我们更好地理解函数的性质和变化规律。
最后,数据表表示是一种较为特殊但同样重要的函数表示方法。
通过数据表,我们可以将函数的输入和输出对应关系清晰地呈现出来。
数据表通常以表格的形式呈现,列出自变量和因变量的取值,并标明它们之间的对应关系。
例如,对于函数y=3x+2,我们可以列出x和y的取值,并展示它们之间的对应关系。
数据表表示方法直接明了,能够直接呈现出函数的输入输出情况,为进一步分析函数提供了便利。
总的来说,函数的表示方法有三种,分别是解析式表示、图像表示和数据表表示。
每种表示方法都有其独特的优势,能够从不同角度展现函数的特征和规律。
在实际应用中,我们可以根据具体情况选择合适的表示方法,以便更好地理解和分析函数的性质和变化规律。
希望本文对您有所帮助,谢谢阅读!。
1、细说函数的三种表示方法2、一次函数漏(错)解例析3、求函数最值问题请注意取值范围4、画好实际问题中的一次函数图象5、运用一次函数图象解题6、一次函数与不等式(组)结合来解题1、细说函数的三种表示方法本章的学习,我们将遇到函数的三种表示方法,即解析式法、列表法、图象法。
下面与大家细说这三种方法的优缺点:一、解析式法用数学式子表示函数关系的方法叫解析式法.如:y=2x+4,s=-5t+600等.例1、有一个水箱,它的容积为500L,水箱内原有水200L,现要将水箱注满,已知每分钟注入水10L.请你写出水箱内水量Q(L)与时间t(分)的函数关系式,并注明取值范围.【分析】本题是求实际问题的函数解析式,要求我们会用函数解析式表示变量之间的关系.解:所列函数关系式为:Q=200+10t(0≤t≤30).解析式法的优点:简单明了,能从解析式清楚看到两个变量之间的全部相依关系,并且适合进行理论分析和推导计算。
缺点:在求对应值时,有时要做较复杂的计算;但有些函数,不一定能用解析式法表示或表示出来非常繁琐。
二、列表法列一张表,第一行表示自变量取的各个值,第二行表示相应的函数值,这种表示函数关系的方法称为列表法。
优点:直观,即对于表中自变量的每一个值,不通过计算,就可从表中找到与它对应的函数值。
缺点:有局限性,即在表中不能把所有的自变量与函数对应值全部列出,而且从表中也不易看不出变量间的对应规律。
如下表,就是邮局信件的一种邮资表:信件的质量m(克) 0<m≤20 20<m≤40 40<m≤60 60<m≤80 邮费y(元)0.8 1.2 1.6 2.4从表中可以直观地看出y与m的对应关系。
三、图象法在平面直角坐标系中,以自变量的每一个值为横坐标,相应的函数值为纵坐标,描出每一个点,由所有这些点组成的图形称为这个函数的图象,这种表示函数的方法称为图象法。
优点:形象直观,可以形象地反映出函数关系变化的趋势和某些性质,把抽象的函数概念图形化。
2021-2022学年高中数学必修一第3章3.1.2函数的表示法(一)学习目标 1.了解函数的三种表示法及各自的优缺点.2.掌握求函数解析式的常见方法.3.尝试作图并从图象上获取有用的信息.知识点函数的表示方法思考函数三种表示法的优缺点?答案1.任何一个函数都可以用解析法表示.(×)2.任何一个函数都可以用图象法表示.(×)3.函数f(x)=2x+1不能用列表法表示.(√)4.函数的图象一定是一条连续不断的曲线.(×)一、函数的表示方法例1某商场新进了10台彩电,每台售价3 000元,试求售出台数x(x为正整数)与收款数y 之间的函数关系,分别用列表法、图象法、解析法表示出来.解(1)列表法:x/台12345678910 y/元 3 000 6 0009 00012 00015 00018 00021 00024 00027 00030 000(3)解析法:y=3 000x,x∈{1,2,3,…,10}.反思感悟应用函数三种表示方法应注意以下三点(1)解析法必须注明函数的定义域;(2)列表法必须罗列出所有的自变量与函数值的对应关系;(3)图象法必须清楚函数图象是“点”还是“线”.跟踪训练1由下表给出函数y=f(x),则f(f(1))等于()x 12345y 4532 1A.1 B.2 C.4 D.5答案 B解析由题中表格可知f(1)=4,所以f(f(1))=f(4)=2.二、求函数解析式例2求下列函数的解析式:(1)已知函数f(x+1)=x+2x,求f(x);(2)已知函数f(x)是二次函数,且f(0)=1,f(x+1)-f(x)=2x,求f(x).解(1)方法一(换元法)设t=x+1,则x=(t-1)2(t≥1).∴f(t)=(t-1)2+2(t-1)=t2-2t+1+2t-2=t2-1,∴f(x)=x2-1(x≥1).方法二(配凑法)∵x+2x=(x)2+2x+1-1=(x+1)2-1,∴f(x+1)=(x+1)2-1(x+1≥1),∴f(x)=x2-1(x≥1).(2)设f(x)=ax2+bx+c(a≠0).∵f (0)=1,∴c =1. 又∵f (x +1)-f (x )=2x ,∴a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x , 整理,得2ax +(a +b )=2x .由恒等式的性质,知上式中对应项的系数相等,∴⎩⎪⎨⎪⎧ 2a =2,a +b =0,解得⎩⎪⎨⎪⎧a =1,b =-1,∴f (x )=x 2-x +1. 反思感悟 求函数解析式的常用方法(1)换元法(有时可用“配凑法”):已知函数f (g (x ))的解析式求f (x )的解析式可用换元法(或“配凑法”),即令g (x )=t ,反解出x ,然后代入f (g (x ))中求出f (t ),从而求出f (x ).(2)待定系数法:若已知函数的类型,可用待定系数法求解,即由函数类型设出函数解析式,再根据条件列方程(组),通过解方程(组)求出待定系数,进而求出函数解析式. 跟踪训练2 (1)已知f (x 2+2)=x 4+4x 2,则f (x )的解析式为________________. 答案 f (x )=x 2-4(x ≥2)解析 因为f (x 2+2)=x 4+4x 2=(x 2+2)2-4, 令t =x 2+2(t ≥2),则f (t )=t 2-4(t ≥2), 所以f (x )=x 2-4(x ≥2).(2)已知f (x )是一次函数,且f (f (x ))=4x -1,则f (x )=________. 答案 2x -13或-2x +1解析 因为f (x )是一次函数,设f (x )=ax +b (a ≠0), 则f (f (x ))=f (ax +b )=a (ax +b )+b =a 2x +ab +b . 又因为f (f (x ))=4x -1,所以a 2x +ab +b =4x -1.所以⎩⎪⎨⎪⎧a 2=4,ab +b =-1,解得⎩⎪⎨⎪⎧a =2,b =-13或⎩⎪⎨⎪⎧a =-2,b =1. 所以f (x )=2x -13或f (x )=-2x +1.三、函数的图象例3 作出下列函数的图象. (1)y =2x +1,x ∈[0,2]; (2)y =2x ,x ∈[2,+∞);(3)y =x 2+2x ,x ∈[-2,2].解 (1)当x ∈[0,2]时,图象是直线y =2x +1的一部分.(2)当x ∈[2,+∞)时,图象是反比例函数y =2x的一部分.(3)当-2≤x ≤2时,图象是抛物线y =x 2+2x 的一部分.延伸探究 根据作出的函数图象求其值域. 解 观察图象可知: (1)中函数的值域为[1,5]. (2)中函数的值域为(0,1]. (3)中函数的值域为[-1,8].反思感悟 作函数y =f (x )图象的方法(1)若y =f (x )是已学过的函数,则描出图象上的几个关键点,直接画出图象即可,有些可能需要根据定义域进行取舍.(2)若y =f (x )不是所学过的函数之一,则要按:①列表;②描点;③连线三个基本步骤作出y =f (x )的图象.跟踪训练3 作出下列函数的图象: (1)y =1-x (x ∈Z ); (2)y =x 2-4x +3,x ∈[1,3]. 解 (1)因为x ∈Z ,所以图象为直线y =1-x 上的孤立点,其图象如图①所示. (2)y =x 2-4x +3=(x -2)2-1, 当x =1,3时,y =0;当x =2时,y =-1,其图象如图②所示.函数图象的应用典例(1)已知f(x)的图象如图所示,则f(x)的定义域为________,值域为________.考点函数图象题点函数图象的应用答案[-2,4]∪[5,8][-4,3]解析函数的定义域对应图象上所有点横坐标的取值集合,值域对应纵坐标的取值集合.(2)若函数f(x)=x2-4x+3(x≥0)的图象与y=m有两个交点,求实数m的取值范围.考点函数图象题点函数图象的应用解f(x)=x2-4x+3(x≥0)的图象如图,f(x)的图象与直线y=m有2个不同交点,由图易知-1<m≤3.[素养提升](1)函数图象很直观,在解题过程中常用来帮助理解问题的数学本质,依托函数图象可以更直观地寻求问题的解决思路和要点.(2)借助几何直观认识事物的位置关系,形态变化与运动规律;利用图形分析数学问题,是直观想象的核心内容,也是数学的核心素养.1.已知函数f(x)由下表给出,则f(f(3))等于()x 123 4f (x )3 24 1A .1B .2C .3D .4 考点 函数的表示法 题点 函数的表示法 答案 A2.已知函数f (2x +1)=6x +5,则f (x )的解析式是( ) A .f (x )=3x +2 B .f (x )=3x +1 C .f (x )=3x -1 D .f (x )=3x +4答案 A解析 方法一 令2x +1=t ,则x =t -12.所以f (t )=6×t -12+5=3t +2,所以f (x )=3x +2.方法二 因为f (2x +1)=3(2x +1)+2, 所以f (x )=3x +2.3.某同学从家里到学校,为了不迟到,先跑,跑累了再走余下的路,设在途中花的时间为t ,离开家里的路程为d ,下面图形中,能反映该同学的行程的是( )考点 函数图象题点 函数图象的判断与理解 答案 C 4.设函数f ⎝⎛⎭⎪⎫1-x 1+x =x ,则f (x )的表达式为( )A.1+x 1-x(x ≠-1) B.1+x x -1(x ≠-1) C.1-x 1+x (x ≠-1) D.2x x +1(x ≠-1) 答案 C解析 令t =1-x 1+x ,则x =1-t1+t ,∴f (t )=1-t1+t,即f (x )=1-x1+x.5.已知二次函数f (x )的图象经过点(-3,2),顶点是(-2,3),则函数f (x )的解析式为__________. 答案 f (x )=-x 2-4x -1解析 设f (x )=a (x +2)2+3(a ≠0), 由y =f (x )过点(-3,2),得a =-1, ∴f (x )=-(x +2)2+3=-x 2-4x -1.1.知识清单: (1)函数的表示方法. (2)求函数解析式. (3)函数的图象. 2.方法归纳:(1)待定系数法、换元法. (2)数形结合法.3.常见误区:求函数解析式时易忽视定义域.1.已知函数f (x -1)=x 2-3,则f (2)的值为( ) A .-2 B .6 C .1 D .0 答案 B解析 令t =x -1,则x =t +1, ∴f (t )=(t +1)2-3=t 2+2t -2, ∴f (2)=22+2×2-2=6.2.已知函数y =f (x )的对应关系如表所示,函数y =g (x )的图象是如图的曲线ABC ,其中A (1,3),B (2,1),C (3,2),则f (g (2))的值为( )x 1 2 3 f (x )23A.3 B .2C .1D .0 答案 B解析 ∵g (2)=1, ∴f (g (2))=f (1)=2.3.从甲市到乙市t min 的电话费由函数g (t )=1.06·(0.75[t ]+1)给出,其中t >0,[t ]为不超过t 的最大整数,则从甲市到乙市5.5 min 的电话费为( ) A .5.04元 B .5.43元 C .5.83元 D .5.38元 答案 A解析 依题意知g (5.5)=1.06(0.75×5+1) =5.035≈5.04,故选A.4.如果f ⎝⎛⎭⎫1x =x 1-x ,则当x ≠0,1时,f (x )等于( ) A.1x B.1x -1 C.11-x D.1x -1 考点 求函数的解析式 题点 换元法求函数解析式 答案 B解析 令1x =t ,则x =1t ,代入f ⎝⎛⎭⎫1x =x 1-x , 则有f (t )=1t1-1t =1t -1,故f (x )=1x -1.故选B.5.函数y =x1+x的大致图象是( )考点 函数图象题点 求作或判断函数的图象 答案 A解析 方法一 y =x1+x 的定义域为{x |x ≠-1},排除C ,D ,当x =0时,y =0,排除B. 方法二 y =x 1+x =1-1x +1,由函数的平移性质可知A 正确.6.已知函数f (x )=x -mx ,且此函数图象过点(5,4),则实数m 的值为________.答案 5解析 将点(5,4)代入f (x )=x -mx,得m =5.7.某航空公司规定,乘客所携带行李的重量x (kg)与其运费y (元)由如图的一次函数图象确定,那么乘客可免费携带行李的最大重量为________kg.答案 19解析 设一次函数解析式为y =ax +b (a ≠0),代入点(30,330)与点(40,630)得⎩⎪⎨⎪⎧330=30a +b ,630=40a +b ,解得⎩⎪⎨⎪⎧a =30,b =-570.即y =30x -570,若要免费,则y ≤0,所以x ≤19.8.已知a ,b 为常数,若f (x )=x 2+4x +3,f (ax +b )=x 2+10x +24,则5a -b =________. 答案 2解析 ∵f (x )=x 2+4x +3, ∴f (ax +b )=(ax +b )2+4(ax +b )+3 =a 2x 2+(2ab +4a )x +b 2+4b +3 =x 2+10x +24,∴⎩⎪⎨⎪⎧a 2=1,2ab +4a =10,b 2+4b +3=24,∴⎩⎪⎨⎪⎧ a =1,b =3或⎩⎪⎨⎪⎧a =-1,b =-7. ∴5a -b =2.9.如图所示,有一块边长为a 的正方形铁皮,将其四角各截去一个边长为x 的小正方形,然后折成一个无盖的盒子,写出此盒子的体积V 以x 为自变量的函数式,并指明这个函数的定义域.解 由题意可知该盒子的底面是边长为(a -2x )的正方形,高为x , 所以此盒子的体积V =(a -2x )2·x =x (a -2x )2,其中自变量x 应满足⎩⎪⎨⎪⎧a -2x >0,x >0,即0<x <a 2.所以此盒子的体积V 以x 为自变量的函数式为V =x (a -2x )2,定义域为⎝⎛⎭⎫0,a2. 10.画出函数f (x )=-x 2+2x +3的图象,并根据图象回答下列问题: (1)比较f (0),f (1),f (3)的大小; (2)若x 1<x 2<1,比较f (x 1)与f (x 2)的大小; (3)求函数f (x )的值域. 考点 函数图象 题点 函数图象的应用解 函数f (x )=-x 2+2x +3的定义域为R , 列表:x -1 0 1 3 y34描点,连线,得函数图象如图:(1)根据图象,容易发现f (0)=3, f (1)=4,f (3)=0, 所以f (3)<f (0)<f (1).(2)根据图象,容易发现当x 1<x 2<1时,有f (x 1)<f (x 2).(3)根据图象,可以看出函数的图象是以(1,4)为顶点,开口向下的抛物线,因此,函数的值域为(-∞,4].11.若一次函数的图象经过点A (1,6)和B (2,8),则该函数的图象还经过的点的坐标为( ) A.⎝⎛⎭⎫12,5 B.⎝⎛⎭⎫14,4 C .(-1,3) D .(-2,1)答案 A解析 设一次函数的解析式为y =kx +b (k ≠0),则该函数的图象经过点A (1,6)和B (2,8),得⎩⎪⎨⎪⎧ k +b =6,2k +b =8,解得⎩⎪⎨⎪⎧k =2,b =4,所以此函数的解析式为y =2x +4,只有A 选项的坐标符合此函数的解析式.故选A.12.设函数f ⎝⎛⎭⎫1+1x =2x +1,则f (x )的表达式为( ) A.1+x1-x(x ≠1) B.1+xx -1(x ≠1) C.1-x 1+x (x ≠-1) D.2x x +1(x ≠-1) 答案 B解析 令1+1x =t ,则t ≠1,∴x =1t -1,t ≠1,∴f (t )=2t -1+1=1+t t -1,t ≠1,∴f (x )=1+xx -1(x ≠1),故选B.13.已知函数F (x )=f (x )+g (x ),其中f (x )是x 的正比例函数,g (x )是x 的反比例函数,且F ⎝⎛⎭⎫13=16,F (1)=8,则F (x )的解析式为________. 答案 F (x )=3x +5x(x ≠0)解析 设f (x )=kx (k ≠0),g (x )=m x (m ≠0,且x ≠0),则F (x )=kx +mx .由F ⎝⎛⎭⎫13=16,F (1)=8,得⎩⎪⎨⎪⎧13k +3m =16,k +m =8,解得⎩⎪⎨⎪⎧k =3,m =5,所以F (x )=3x +5x(x ≠0).14.已知函数f (x ),g (x )分别由下表给出:则满足f (g (x ))=g (f (x ))的x 的值为________.x 1 2 3 4 f (x ) 1 3 1 3 g (x )3232考点 函数的表示法 题点 函数的表示法 答案 2或4解析 当x =1时,f (g (1))=f (3)=1,g (f (1))=g (1)=3. 当x =2时,f (g (2))=f (2)=3,g (f (2))=g (3)=3. 当x =3时,f (g (3))=f (3)=1,g (f (3))=g (1)=3. 当x =4时,f (g (4))=f (2)=3,g (f (4))=g (3)=3. 满足f (g (x ))=g (f (x ))的x 的值只有2或4.15.已知f (x )+3f (-x )=2x +1,则f (x )的解析式是________. 考点 求函数的解析式 题点 方程组法求函数解析式 答案 f (x )=-x +14解析 因为f (x )+3f (-x )=2x +1,①所以把①中的x 换成-x ,得f (-x )+3f (x )=-2x +1.② 由①②解得f (x )=-x +14.16.某企业生产某种产品时的能耗y 与产品件数x 之间的关系式为y =ax +bx .且当x =2时,y=100;当x =7时,y =35.且此产品生产件数不超过20件. (1)写出函数y 关于x 的解析式; (2)用列表法表示此函数,并画出图象.解 (1)将⎩⎪⎨⎪⎧ x =2,y =100与⎩⎪⎨⎪⎧x =7,y =35代入y =ax +bx 中,得⎩⎨⎧2a +b2=100,7a +b7=35⇒⎩⎪⎨⎪⎧ 4a +b =200,49a +b =245⇒⎩⎪⎨⎪⎧a =1,b =196.所以所求函数解析式为y =x +196x (x ∈N,0<x ≤20).(2)当x ∈{1,2,3,4,5,…,20}时,列表:x 12345678910 y 19710068.35344.238.73532.530.829.6x 11121314151617181920 y 28.828.328.12828.128.2528.528.929.329.8。
函数的三种表示方法
函数是数学中一个非常重要的概念,它在数学、物理、工程等领域都有着广泛的应用。
在数学中,函数可以用不同的方式来表示,下面我们将介绍函数的三种表示方法。
一、显式表示法。
显式表示法是指通过一个公式或者表达式来表示函数。
例如,函数y = 2x + 3就是一个显式表示法的函数。
在这个表示法中,我们可以直接通过公式或者表达式来计算函数在任意一点的取值,非常直观和方便。
二、参数方程表示法。
参数方程表示法是指用另外一个变量t来表示函数的自变量和因变量。
例如,对于圆的参数方程表示为x = rcos(t),y = rsin(t),其中r为圆的半径,t为参数。
这种表示方法在描述一些曲线、曲面等几何图形时非常方便,可以将复杂的曲线简化为参数方程的形式。
三、隐式表示法。
隐式表示法是指用一个方程来表示函数,其中自变量和因变量之间的关系并不是直接展现出来的。
例如,对于圆的隐式表示为x^2 + y^2 = r^2。
在这种表示方法中,函数的形式可能会比较复杂,但是在一些情况下,隐式表示法可以更好地描述函数的性质。
总结。
以上就是函数的三种表示方法,它们分别是显式表示法、参数方程表示法和隐式表示法。
每种表示方法都有着自己的特点和适用范围,选择合适的表示方法可以更好地描述和应用函数。
在实际问题中,我们可以根据具体情况选择合适的表示方
法来进行分析和计算,从而更好地理解和利用函数。
希望本文对您有所帮助,谢谢阅读!。
函数的表示方法(一)
【教学目标】
1. 掌握函数的三种表示方法(图象法、列表法、解析法),理解同一个函数可以用不同的
方法来表示;
2. 了解分段函数,会作其图,并简单地应用;
3. 会用待定系数法、换元法求函数的解析式.
【教学重点】
在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.
【课前导学】
1.一次函数一般形式为 .
2.二次函数的形式:
(1)一般式: ;
3.已知()31f x x =-,()23g x x =+,则 [()]f g x = , [()]g f x = .
4.已知函数()f x 是二次函数,且满足(0)1,(1)()2f f x f x x =+-=,求()f x .
【课堂探究】
一、典型例题
例1.购买某种饮料x 听,所需钱数为y 元,若没听2元,试分别用解析法、列表法、图象法
将y 表示成x ({
}4,3,2,1∈x )的函数,并指出该函数的值域.
例2. 画出函数()x x f =的函数,并求()()1,3),3(--f f f ,)1(f 的值.
三、课堂练习
1.已知21,0()21,0
x x f x x x ⎧+≥=⎨+<⎩,(2)f -= ;2(1)f a += .
2.若二次函数22
23y x mx m =-+-+的图像对称轴为20x +=,则m = ,顶点坐标为 .
四、课堂小结
【课后作业】。