函数的几种表示方法
- 格式:doc
- 大小:184.00 KB
- 文档页数:5
函数的三种表示方法全文共852字,预计阅读时间:3分钟上周,我们学习了函数的概念和三个要素。
你记得他们吗?如果忘记了,请及时复习!今天我们将继续函数的学习,主要学习函数的不同表达方式和相关知识点,并额外拓展映射的内容,大家看好了!一,函数的常见表示方法在初中阶段,我们已经学习了函数的三种常用表示法,即解析法、列表法和图像法。
你知道这三种方法各自的适用范围和优缺点吗?解析法:使用数学表达式表示两变量之间的对应关系,也就是函数式表达法,其优点是比较简洁明了,并且可以在已知定义域(自变量)的情况下根据函数式的特点求得值域(函数值),但是这种方法往往非常抽象,因此在之后的学习过程中,解析法常常和图像法结合使用;列表法:使用表格表示两变量之间的对应关系,这种方法的优点是并不需要计算就可以清晰地看出函数值,适合银行利率表之类的问题,但是大家也会发现,列表法的容量是非常有限的,而且是离散的,并不是连贯的;图像法:用图像来表示两个变量之间的对应关系,与前两者相比,图像法更直观,能看到变化趋势。
然而,提取图像的过程往往很复杂,因此它常常与分析方法一起使用。
二,分段函数分段函数是指在一个定义域内,自变量的不同范围有不同对应关系的函数。
需要同学们注意的是:1)虽然分段函数包括几个不同的对应关系,但是它依然是一个函数;2)分段函数的定义域是几个部分的“并”(什么是并,大家还记得吗?);3)分段函数定义域的不同部分并不能相交;4)由于分段函数包含若干对应关系,因此分段函数的图像不一定是连续曲线。
三,扩展学习 - 映射人教版教材中已经删除了映射的内容,但是为了让学生更好的理解函数,我们先简单的了解一下映射的基本概念,并不是强制性的!映射的定义是:其中“f:A→B”表示A到B的映射,而“f:B→A”表示B到A的映射,这两者并不是同一个映射!映射也有三个要素,即两个集合和一个对应的规则,和函数很像。
但函数要求两个集合必须是数的集合,映射对集合没有特殊要求。
函数的表示方法★知识梳理一、函数的三种表示法:图象法、列表法、解析法1.图象法:就是用函数图象表示两个变量之间的关系; 2.列表法:就是列出表格来表示两个变量的函数关系; 3.解析法:就是把两个变量的函数关系,用等式来表示。
二、分段函数在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。
★重、难点突破重点:掌握函数的三种表示法-----图象法、列表法、解析法,分段函数的概念 难点:分段函数的概念,求函数的解析式重难点:掌握求函数的解析式的一般常用方法: (1)若已知函数的类型(如一次函数、二次函数),则用待定系数法; (2)若已知复合函数)]([x g f 的解析式,则可用换元法或配凑法; 问题1.已知二次函数)(x f 满足564)12(2+-=+x x x f ,求)(x f 方法一:换元法令)(12R t t x ∈=+,则21-=t x ,从而)(955216)21(4)(22R t t t t t t f ∈+-=+-⋅--= 所以)(95)(2R x x x x f ∈+-= 方法二:配凑法因为9)12(5)12(410)12(564)12(222++-+=+-+==+-=+x x x x x x x f 所以)(95)(2R x x x x f ∈+-= 方法三:待定系数法因为)(x f 是二次函数,故可设c bx ax x f ++=2)(,从而由564)12(2+-=+x x x f 可求出951=-==c b a 、、,所以)(95)(2R x x x x f ∈+-=(3)若已知抽象函数的表达式,则常用解方程组消参的方法求出)(x f 问题2:已知函数)(x f 满足x xf x f 3)1(2)(=+,求)(x f 因为 x xf x f 3)1(2)(=+① 以x 1代x 得 xx f x f 13)(2)1(⋅=+②由①②联立消去)1(x f 得)0(2)(≠-=x x xx f ★热点考点题型探析考点1:用图像法表示函数[例1] (09年广东南海中学)一水池有2个进水口, 1个出水口,一个口的进、出水的速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.给出以下3个论断:进水量 出水量 蓄水量(1)0点到3点只进水不出水;(2)3点到4点不进水只出水;(3)4点到6点不进水不出水.则一定不正确...的论断是 (把你认为是符合题意的论断序号都填上) . [解题思路]根据题意和所给出的图象,对三个论断进行确认即可。
表示函数的三种方法函数是数学中的一个重要概念,它描述了一个变量如何依赖于另一个变量。
在数学和计算机科学中,表示函数的方法有很多种,本文将介绍其中的三种方法,显式函数、隐式函数和参数方程。
首先,我们来谈谈显式函数。
显式函数是最为常见的一种表示函数的方法。
当一个函数可以被直接表示为一个变量的函数时,我们称之为显式函数。
比如,y =2x + 3就是一个显式函数的例子,其中y是x的线性函数。
在这种表示方法中,我们可以直接通过函数表达式来计算函数值,非常直观和方便。
其次,我们来看看隐式函数。
与显式函数相对应,隐式函数是一种不能直接表示为一个变量的函数的方法。
在隐式函数中,通常会包含多个变量之间的关系,而这种关系不容易用单一的函数表达式来表示。
比如,x^2 + y^2 = 1就是一个隐式函数的例子,它表示了一个单位圆的方程。
在这种情况下,我们不能直接通过一个函数表达式来表示函数值,需要通过其他方法来求解。
最后,我们来介绍参数方程。
参数方程是一种使用参数来表示函数的方法。
在参数方程中,一个变量的取值由另一个参数决定,而这个参数可以是一个或多个变量。
比如,x = cos(t)、y = sin(t)就是一个参数方程的例子,它表示了一个单位圆的参数方程。
在这种表示方法中,我们通过改变参数t的取值来得到不同的函数值,非常适合描述一些复杂的曲线和图形。
总结一下,表示函数的三种方法分别是显式函数、隐式函数和参数方程。
显式函数是最为直观和常见的一种方法,隐式函数适用于描述多个变量之间的复杂关系,而参数方程则适合描述曲线和图形的特定形式。
不同的表示方法适用于不同的情况,我们可以根据具体的问题来选择合适的方法来表示函数。
希望本文的介绍能够帮助读者更好地理解表示函数的方法。
1、细说函数的三种表示方法2、一次函数漏(错)解例析3、求函数最值问题请注意取值范围4、画好实际问题中的一次函数图象5、运用一次函数图象解题6、一次函数与不等式(组)结合来解题1、细说函数的三种表示方法本章的学习,我们将遇到函数的三种表示方法,即解析式法、列表法、图象法。
下面与大家细说这三种方法的优缺点:一、解析式法用数学式子表示函数关系的方法叫解析式法.如:y=2x+4,s=-5t+600等.例1、有一个水箱,它的容积为500L,水箱内原有水200L,现要将水箱注满,已知每分钟注入水10L.请你写出水箱内水量Q(L)与时间t(分)的函数关系式,并注明取值范围.【分析】本题是求实际问题的函数解析式,要求我们会用函数解析式表示变量之间的关系.解:所列函数关系式为:Q=200+10t(0≤t≤30).解析式法的优点:简单明了,能从解析式清楚看到两个变量之间的全部相依关系,并且适合进行理论分析和推导计算。
缺点:在求对应值时,有时要做较复杂的计算;但有些函数,不一定能用解析式法表示或表示出来非常繁琐。
二、列表法列一张表,第一行表示自变量取的各个值,第二行表示相应的函数值,这种表示函数关系的方法称为列表法。
优点:直观,即对于表中自变量的每一个值,不通过计算,就可从表中找到与它对应的函数值。
缺点:有局限性,即在表中不能把所有的自变量与函数对应值全部列出,而且从表中也不易看不出变量间的对应规律。
如下表,就是邮局信件的一种邮资表:信件的质量m(克) 0<m≤20 20<m≤40 40<m≤60 60<m≤80 邮费y(元)0.8 1.2 1.6 2.4从表中可以直观地看出y与m的对应关系。
三、图象法在平面直角坐标系中,以自变量的每一个值为横坐标,相应的函数值为纵坐标,描出每一个点,由所有这些点组成的图形称为这个函数的图象,这种表示函数的方法称为图象法。
优点:形象直观,可以形象地反映出函数关系变化的趋势和某些性质,把抽象的函数概念图形化。
函数的三种表示方法函数是数学中一个非常重要的概念,它描述了一种特殊的关系,即对于每一个自变量,都有唯一确定的因变量与之对应。
在数学中,函数的表示方法有很多种,本文将介绍函数的三种表示方法,显式表示法、参数方程表示法和隐式表示法。
首先,我们来看显式表示法。
显式表示法是指通过一个公式或者表达式来明确地表示函数。
例如,对于函数y = 2x + 3,这就是一个显式表示的函数。
在这个表示方法中,我们可以直接通过公式或者表达式来求解函数的值,而不需要进行其他的转换或者计算。
其次,我们来介绍参数方程表示法。
参数方程表示法是一种将自变量用参数表示的函数表示方法。
通常情况下,参数方程表示法常常用于描述曲线或者曲面。
例如,对于二维平面上的一条曲线,可以用参数方程表示为x = f(t),y = g(t),其中t为参数。
通过参数方程表示法,我们可以更加直观地描述曲线的形状和特征。
最后,我们来讨论隐式表示法。
隐式表示法是一种将自变量和因变量之间的关系用方程式表示的函数表示方法。
在隐式表示法中,通常会出现方程中同时包含自变量和因变量的情况,例如x^2 + y^2 = 1。
通过这种表示方法,我们可以描述一些复杂的函数关系,例如圆、椭圆等。
综上所述,函数的三种表示方法分别是显式表示法、参数方程表示法和隐式表示法。
每种表示方法都有其适用的场景和特点,我们可以根据具体的问题和需求来选择合适的表示方法。
通过灵活运用这三种表示方法,我们可以更加深入地理解和应用函数的概念,为数学建模和问题求解提供更多的可能性。
希望本文的介绍能够帮助读者更加清晰地理解函数的表示方法,为进一步的学习和研究打下坚实的基础。
函数有哪几种表示法?你能谈谈它们的优点和不足吗?
答:表示函数有三种方法:解析法,列表法,图象法.结合其意义、优点与不足,分别说明如下.
(1)利用解析式(如学过的代数式)表示函数的方法叫做解析法.用解析式表示函数的优点是简明扼要、规范准确.已学利用函数的解析式,求自变量x=a时对应的函数值,还可利用函数的解析式,列表、描点、画函数的图象,进而研究函数的性质,又可利用函数解析式的结构特点,分析和发现自变量与函数间的依存关系,猜想或推导函数的性质(如对称性、增减性等),探求函数的应用等.不足之处是有些变量与函数关系很难或不能用解析式表示,求x与y的对应值需要逐个计算、有时比较繁杂.
(2)通过列表给出y与x的对应数值、表示y是x的函数的方法叫做列表法.列表法的优点是能鲜明地显现出自变量与函数值之间的数量关系,于是一些数学用表应运而生.
(3)利用图象表示y是x的函数的方法叫做图象法.用图象表示函数的优点是形象直观,清晰呈现函数的增减变化、点的对称、最大(或小)值等性质.图象法的不足之处是所画出的图象是近似的、局部的,观察或由图象确定的函数值往往不够准确.
由于函数关系的三种表示方法各具特色,优点突出,但大都存在着缺点,不尽人意,所以在应用中本着物尽其用、扬长避短、优势互补的精神,通常表示函数关系是把这三种方法结合起来运用,先确定函数的解析式,即用解析法表示函数;再根据函数解析式,计算自变量与函数的各组对应值,列表;最后是画出函数的图象.。
函数的表示方法通常有公式法表格法图示法反证法
1、公式法:
用解析式把把x与y的对应关系表述出来,最常见的一种表示函数关系的方法。
用含有数学关系的等式来表示两个变量之间的函数关系的方法
叫做解析式法。
这种方法的优点是能简明、准确、清楚地表示出函数与自变量之间的数量关系。
2、表格法:
用表格的方式把x与y的对应关系列举出来。
比较少用。
3、图示法:
在坐标平面中用曲线的表示出函数关系,比较常用,经常和解析式结合起来理解函数的性质。
这种方法的优点是通过函数图象可以直观、形象地把函数关系表示出来;缺点是从图象观察得到的数量关系是近似的。
4、反证法:
反证法是间接论证的方法之一。
亦称“逆证”。
是通过断定与论题相矛盾的判断(即反论题)的虚假来确立论题的真实性的论证方法。
反证法是一种有效的解释方法,特别是在进行正面的直接论证或反驳比较困难时,用反证法会收到更好的效果。
函数的三种表示方法教案函数是数学中非常重要的概念,它在数学、物理、工程等领域都有着广泛的应用。
在学习函数的表示方法时,我们通常会接触到三种不同的表示方法,分别是表格法、图像法和公式法。
本教案将针对这三种方法进行详细的介绍和示范。
一、表格法。
表格法是最直观的函数表示方法之一。
通过建立自变量和因变量之间的对应关系,我们可以将函数的取值用表格的形式清晰地展现出来。
比如,对于函数y = 2x + 1,我们可以列出x的取值和相应的y的取值,然后将其整理成表格的形式。
这样,我们就可以清晰地看到x和y之间的对应关系,从而更好地理解函数的性质。
二、图像法。
图像法是通过绘制函数的图像来表示函数的方法。
通过将函数表示在坐标系中,我们可以直观地看到函数的增减性、奇偶性、周期性等特点。
同时,图像法也可以帮助我们更好地理解函数与几何图形之间的关系,比如直线函数对应着一条直线,二次函数对应着抛物线等。
因此,通过图像法,我们可以更深入地理解函数的几何意义。
三、公式法。
公式法是最常用的函数表示方法之一。
通过用代数符号和运算符号构成的公式来表示函数,我们可以简洁地表达函数的性质和特点。
比如,对于函数y = ax^2 + bx + c,其中a、b、c分别代表抛物线的开口方向、顶点坐标等特征。
通过公式法,我们可以直接得到函数的一些重要性质,比如导数、极值、零点等,从而更好地分析函数的性态。
综合运用。
在学习函数的表示方法时,我们需要综合运用表格法、图像法和公式法。
通过表格法,我们可以直观地看到函数值的对应关系;通过图像法,我们可以直观地看到函数的几何特征;通过公式法,我们可以简洁地表达函数的性质。
综合运用这三种方法,可以帮助我们更全面地理解函数的性质和特点。
结语。
通过本教案的学习,相信大家对函数的三种表示方法有了更深入的了解。
在学习函数时,我们要灵活运用这三种方法,从不同的角度去理解函数的性质和特点。
同时,我们也要注重实际问题与函数的联系,通过函数的表示方法去解决实际问题,提高数学建模和问题求解的能力。
函数的表示方法有三种
首先,我们来谈谈显式函数。
显式函数是最为常见和直观的函数表示方法。
它通常采用y=f(x)的形式,其中y表示函数的输出,x表示函数的输入,f(x)表示输出和输入之间的关系。
以一元一次函数y=2x+3为例,这就是一个典型的显式函数表示方法。
在这种表示方法中,我们可以清晰地看到输入和输出之间的关系,因此能够方便地进行计算和分析。
其次,隐式函数是另一种常见的函数表示方法。
与显式函数不同的是,隐式函数通常不易直接解出y关于x的表达式。
例如,圆的方程x^2+y^2=1就是一个隐式函数的表示方法。
在这种情况下,我们无法直接从方程中解出y关于x的表达式,但仍然可以通过这个方程描述出圆的性质和特点。
在实际应用中,有些函数的关系并不容易用显式表达式来表示,这时候就需要用到隐式函数的表示方法。
最后,我们来介绍参数方程这种函数表示方法。
参数方程是一种使用参数来表示函数关系的方法。
通常采用x=f(t),y=g(t)的形式,其中x和y都是t的函数,t 是参数。
参数方程常常用于描述曲线或者曲面在平面或者空间中的轨迹。
例如,二维空间中的抛物线可以通过参数方程x=t,y=t^2来表示。
在这种表示方法中,我们可以通过参数t的取值来描述出抛物线上的各个点的位置,因此参数方程在描述曲线或者曲面的轨迹时具有很大的优势。
总之,函数的表示方法有三种,分别是显式函数、隐式函数和参数方程。
每种表示方法都有其适用的场景和特点,我们需要根据具体情况选择合适的表示方法。
希望本文的介绍能够帮助读者更好地理解和运用函数的概念。
函数的三种表示方法的优点、缺点对比
表示函数形象、直观;
能清晰呈现函数的增减变化、点的对称,最大(或最小值)等问题。
所画出的图像是近似的、局部的;
由图像确定的函数值往往不够准确;
能鲜明地呈现出自变量和函数值之间的数量关系只能列出部分自变量与函数的对应值,难易反映函数变化的全貌;
表示函数简明扼要、规范准确;有些变量与函数关系很难或不
能用解析式表示,求x与y的对
应值需要逐个计算,有时比较复
杂。
在定义域内不同部分上,有不同的解析表达式,这种函数称为分段函数。
分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数值域的并集。
分段函数虽然由几个部分组成,但它表示的是一个函数。
D
C
B
A
1.2.2 函数的表示方法 第一课时 函数的几种表示方法
【教学目标】
1.掌握函数的三种主要表示方法
2.能选择恰当的方法表示具体问题中的函数关系 3.会画简单函数的图像 【教学重难点】
教学重难点:图像法、列表法、解析法表示函数 【教学过程】 一、复习引入:
1.函数的定义是什么?函数的图象的定义是什么? 2.在中学数学中,画函数图象的基本方法是什么?
3.用描点法画函数图象,怎样避免描点前盲目列表计算?怎样做到描最少的点却能显示出图象的主要特征?
二、讲解新课:函数的表示方法
表示函数的方法,常用的有解析法、列表法和图象法三种.
⑴解析法:就是把两个变量的函数关系,用一个等式表示,这个等式叫做函数的解析表达式,简称解析式.
例如,s=602
t ,A=π2
r ,S=2rl π,y=a 2
x +bx+c(a ≠0),y=
2-x (x ≥2)等等都是用解析
式表示函数关系的.
优点:一是简明、全面地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.中学阶段研究的函数主要是用解析法表示的函数.
⑵列表法:就是列出表格来表示两个变量的函数关系.
学号 1 2 3 4 5 6 7 8 9 身高
125
135
140
156
138
172
167
158
169
用列表法来表示函数关系的.公共汽车上的票价表
优点:不需要计算就可以直接看出与自变量的值相对应的函数值. ⑶图象法:就是用函数图象表示两个变量之间的关系.
例如,气象台应用自动记录器描绘温度随时间变化的曲线,课本
中我国人口出生率变化的曲线,工厂的生产图象,股市走向图等都是用图象法表示函数关系的.
优点:能直观形象地表示出自变量的变化,相应的函数值变化的趋势,这样使得我们可以通过图象来研究函数的某些性质.
三、例题讲解
例1某种笔记本每个5元,买 x ∈{1,2,3,4}个笔记本的钱数记为y
(元),试写出以x 为自变量的函数y 的解析式,并画出这个函数的图像
解:这个函数的定义域集合是{1,2,3,4},函数的解析式为 y=5x ,x ∈{1,2,3,4}.
它的图象由4个孤立点A (1, 5) B (2, 10) C (3, 15) D (4, 20)组成,如图
所示
变式练习1 设,)(331--+=+x x x x f 221)(--+=+x x x x g 求f [g (x )]。
解:)1
(3)1()1(3x x x x x x f +-+=+∴x x x f 3)(3-=
2)1
()1(2-+=+x x x x g ∴2)(2-=x x g
∴[]=)(x g f 296246-+-x x x
例2作出函数x x y 1
+
=的图象
列表描点:
Q P O G N M L K
(0.2, 5.0)(0.3, 4.0)(0.4, 3.0)(1.0, 2.0)(2.0, 2.5)(3.0, 3.3)(4.0, 4.3)(5.0, 5.2)
K'L'M'N'G'O'P'Q'
(-5.0, -5.2)(-4.0, -4.3)(-3.0, -3.3)(-2.0, -2.5)(-1.0, -2.0)(-0.4, -3.0)(-0.3, -4.0)(-0.2, -5.0)
变式练习2 画出函数y =∣x ∣与函数y=∣x -2∣的图象
四、小结 本节课学习了以下内容:函数的表示方法及图像的作法 【板书设计】 一、 函数的表示方法 二、 典型例题
例1: 例2: 小结:
【作业布置】
课本第56习题2.2:1,2,3,4
1.2.2 函数的表示方法 第一课时 函数的几种表示方法
一 、 预习目标
通过预习理解函数的表示 二 、预习内容
1.列表法:通过列出与对应 的表来表示的方法叫做列表法
2.图象法:以为横坐标,对应的为纵坐标的点的集合,叫做函数y=f (x )的图象,这种用“图形”表示函数的方法叫做图象法.
3.解析法(公式法):用来表达函数y=f (x )(x ∈A )中的f (x ),这种表达函数的方法叫解析法,也称公式法。
4.分段函数:在函数的定义域内,对于自变量x 的不同取值区间,有着 ,这样的函数通常叫做。
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
D C
B A
疑惑点
疑惑内容
课内探究学案
一 、学习目标
1.掌握函数的三种主要表示方法
2.能选择恰当的方法表示具体问题中的函数关系 3.会画简单函数的图像
学习重难点:图像法、列表法、解析法表示函数 二 、 学习过程
表示函数的方法,常用的有解析法、列表法和图象法三种.
⑴解析法:就是把两个变量的函数关系,用一个等式表示,这个等式叫做函数的解析表达式,简称解析式.
例如,s=602
t ,A=π2
r ,S=2rl π,y=a 2
x +bx+c(a ≠0),y=
2-x (x ≥2)等等都是用解析
式表示函数关系的.
优点:一是简明、全面地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.中学阶段研究的函数主要是用解析法表示的函数.
⑵列表法:就是列出表格来表示两个变量的函数关系.
学号 1 2 3 4 5 6 7 8 9 身高
125
135
140
156
138
172
167
158
169
用列表法来表示函数关系的.公共汽车上的票价表
优点:不需要计算就可以直接看出与自变量的值相对应的函数值. ⑶图象法:就是用函数图象表示两个变量之间的关系. 例如,气象台应用自动记录器描绘温度随时间变化的曲线,课本中我国人口出生率变化的曲线,工厂的生产图象,股市走向图等都是用图象法表示函数关系的.
优点:能直观形象地表示出自变量的变化,相应的函数值变化的趋势,这样使得我们可以通过图象来研究函数的某些性质.
三、例题讲解
例1某种笔记本每个5元,买x ∈{1,2,3,4}个笔记本的钱数记为y (元),
试写出以x 为自变量的函数y 的解析式,并画出这个函数的图像
变式练习 1 设,)(331--+=+x x x x f 221)(--+=+x x x x g 求f [g (x )]。
例2作出函数
x x y 1
+
=的图象
变式练习2 画出函数y =∣x ∣与函数y=∣x -2∣的图象 三、当堂检测
课本第56页练习1,2,3
课后练习与提高
1.在股票买卖过程中,经常用到两种曲线,一种是即时价格曲线y =f(x)(实线表示),另一种是平均价格曲线y =g(x)(虚线表示)〔如f(2)=3是指开始买卖后两个小时的即时价格为3元;g(2)=3表示两个小时内的平均价格为3元〕,下图给出的四个图象中,其中可能正确的是( )
2.函数f(x+1)为偶函数,且x <1时,f(x)=x 2+1,则x >1时,f(x)的解析式为( )
A.f(x)=x 2-4x+4
B.f(x)=x 2-4x+5
C.f(x)=x 2-4x-5
D.f(x)=x 2+4x+5 3.函数)1(·|
|)(>=
a a x x x f x
的图象的大致形状是( )
4.如图,设点A 是单位圆上的一定点,动点P 从点A 出发在圆上按逆时针方向旋转一周,点P 所旋转过的
的长为l,弦AP 的长为d,则函数d =f(l)的图象大致是( )
5.用一根长为12m 的铝合金条做成一个“目”字形窗户的框架(不计损耗),要使这个窗户通过的阳光最充足,则框架的长与宽应分别为_________.
6.已知定义域为R 的函数f(x)满足f [f(x)-x 2+x ]=f(x)-x 2+x. (1)若f(2)=3,求f(1);又若f(0)=a,求f(a);
(2)设有且仅有一个实数x 0,使得f(x 0)=x 0,求函数f(x)的解析表达式. 解答:
1 解析:解答该题要注意平均变化率是一个累积平均效应,因此可以得到正确选项为C. 答案:C
2 解析:因为f(x+1)为偶函数,
所以f(-x+1)=f(x+1),即f(x)=f(2-x).
当x >1时,2-x <1,此时,f(2-x)=(2-x)2+1,即f(x)=x 2-4x+5. 答案:B
3 解析:该函数为一个分段函数,即为⎪⎩⎪⎨⎧<->=>=,
0,,
0,)1(||
)(x a x a a a x x x f x
x x 当x >0时函数f(x)=a x 的图象单调递增;当x <0时,函数f(x)=-a x 的图象单调递减.故选B.
答案:B
4 解析:函数在[0,π]上的解析式为
2
sin 22sin 4cos 22cos 112112
22l l l l d ==-=⨯⨯⨯-+=. 在[π,2π]上的解析式为2
sin
2)2cos(22l l d =--=
π, 故函数d =f(l)的解析式为2
sin 2l
d =,l ∈[0,2π]. 答案:C
5 解析:由题意可知,即是求窗户面积最大时的长与宽,设长为xm,则宽为(x 2
1
3-
)m, ∴),60(32
1
)213(2<<+-=-=x x x x x S 解得当x =3时,2
9
max =S .
∴长为3m,宽为1.5m. 答案:3m,1.5m。