沪教版高中数学高二下册 -12.7 抛物线的标准方程 教案
- 格式:doc
- 大小:2.51 MB
- 文档页数:3
新课导入设计
导入一:
【导入设计】通过抛掷苹果的实验启发学生回忆起对抛物线的了解.板书题目抛物线及其标准方程
【导入构想】苹果的运行轨迹是抛物线,这是我们的日常生活,数学及生活,生活及数学,研究它更有意义.
导入二:
【导入设计】问题1:同学们对抛物线已有了哪些认识?
在物理中,抛物线被认为是抛射物体的运行轨道;在数学中,抛物线是二次函数的图象?
问题2:在二次函数中研究的抛物线有什么特征?
在二次函数中研究的抛物线,它的对称轴是平行于y轴、开口向上或开口向下两种情形.引导学生进一步思考:如果抛物线的对称轴不平行于y轴,那么就不能作为二次函数的图象来研究了.今天,我们突破函数研究中这个限制,从更一般意义上来研究抛物线.
【导入构想】通过提问来激发学生的探究欲望。
第二章圆锥曲线与方程2.2.1 抛物线及其标准方程一、复习与引入过程回忆平面内与一个定点F的距离和一条定直线l的距离的比是常数e的轨迹,当0<e<1时是椭圆,那么当e=1时,它又是什么曲线?二、简单实验如图2-29,把一根直尺固定在画图板内直线l的位置上,一块三角板的一条直角边紧靠直尺的边缘;把一条绳子的一端固定于三角板另一条直角边上的点A,截取绳子的长等于A到直线l的距离AC,并且把绳子另一端固定在图板上的一点F;用一支铅笔扣着绳子,紧靠着三角板的这条直角边把绳子绷紧,然后使三角板紧靠着直尺左右滑动,这样铅笔就描出一条曲线,这条曲线叫做抛物线.反复演示后,请同学们来归纳抛物线的定义,教师总结.三、新课讲授过程(i)由上面的探究过程得出抛物线的定义《板书》平面内与一定点F和一条定直线l的距离相等的点的轨迹叫做抛物线(定点F不在定直线l上).定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.(ii) 抛物线标准方程的推导过程引导学生分析出:方案3中得出的方程作为抛物线的标准方程.这是因为这个方程不仅具有较简的形式,而方程中的系数有明确的几何意义:一次项系数是焦点到准线距离的2倍.由于焦点和准线在坐标系下的不同分布情况,抛物线的标准方程有四种情形(列表如下):将上表画在小黑板上,讲解时出示小黑板,并讲清为什么会出现四种不同的情形,四种情形中P>0;并指出图形的位置特征和方程的形式应结合起来记忆.即:当对称轴为x轴时,方程等号右端为±2px,相应地左端为2y;当对称轴为y轴时,方程等号的右端为±2py,相应地左端为2x.同时注意:当焦点在正半轴上时,取正号;当焦点在负半轴上时,取负号.(iii)例题讲解与引申例1、(1)已知抛物线的标准方程是2y=6x,求它的焦点坐标和准线方程(2)已知抛物线的焦点是F(0,-2),求它的标准方程解 (1)因为p=3,所以抛物线的焦点坐标是(3/2,0)准线方程是x=-3/2(2)因为抛物线的焦点在轴的负半轴上,且p/2=2,p=4,所以抛物线的标准方程是2x=-8y例2一种卫星接收天线的轴截面如图所示。
《抛物线及其标准方程》教案(公开课一、教学内容本节课的教学内容来自于高中数学教材,第三章解析几何,第五节抛物线。
本节课的主要内容有:抛物线的定义、性质、标准方程及其应用。
其中,重点讲解抛物线的标准方程及其求法。
二、教学目标1. 理解抛物线的定义和性质,掌握抛物线的标准方程及其求法。
2. 能够运用抛物线的性质和方程解决一些实际问题。
3. 培养学生的空间想象能力和逻辑思维能力。
三、教学难点与重点重点:抛物线的标准方程及其求法。
难点:抛物线性质的理解和应用。
四、教具与学具准备教具:黑板、粉笔、投影仪、教学课件。
学具:笔记本、尺子、圆规、直尺。
五、教学过程1. 实践情景引入:让学生观察一些生活中常见的抛物线形状,如篮球投篮、抛物线运动等,引发学生对抛物线的兴趣。
2. 讲解抛物线的定义和性质:在黑板上画出一条抛物线,讲解抛物线的定义,如焦点、准线等,并引导学生理解抛物线的性质。
3. 讲解抛物线的标准方程:通过示例,讲解如何求解抛物线的标准方程,让学生跟随步骤,进行练习。
4. 应用练习:给出一些抛物线应用问题,让学生运用所学知识解决,如求解抛物线与坐标轴的交点等。
六、板书设计板书设计如下:抛物线的定义和性质:焦点:到抛物线上任意一点的距离等于到准线距离的点。
准线:与抛物线对称,且到焦点的距离等于到抛物线上任意一点的距离。
抛物线的标准方程:y^2 = 4ax (a > 0)y^2 = 4ax (a < 0)七、作业设计(1)焦点在x轴上,顶点在原点,开口向上。
(2)焦点在y轴上,顶点在原点,开口向下。
答案:(1)y^2 = 4ax(2)x^2 = 4ay2. 已知抛物线的标准方程为y^2 = 4ax,求解抛物线与x轴、y 轴的交点坐标。
答案:与x轴的交点:(a, 0),(a, 0)与y轴的交点:(0, 2a),(0, 2a)八、课后反思及拓展延伸本节课通过讲解抛物线的定义、性质和标准方程,让学生掌握了抛物线的基本知识,能够在实际问题中应用。
教学题目:抛物线的标准方程教学目标:1.能力与技能:(1)掌握抛物线的定义,理解抛物线的发生过程(2)掌握抛物线的四种标准方程、图像、焦点、准线之间的关系(3)会用待定系数法确定抛物线标准方程。
2.过程与方法:(1)有实际问题引入要研究的课题,发展学生的实践能力,通过实验使学生发现抛物线的形成过程。
(2)求抛物线的焦点坐标和准线方程中贯彻数形结合的思想。
(3)掌握待定系数法在方程中的应用。
3.情感与价值观:让学生学会细心观察周围的事物,数学来源于生活,又为生活服务。
教学过程:一.引入:探照灯、汽车前灯、卫星天线、激光望远镜都是利用抛物线原理制成的,因此在生活当中,抛物线是一个用途非常广泛的曲线。
下面简单介绍抛物线的光学反射原理,引起学生的兴趣。
从而引出课题:抛物线的标准方程。
二.新课:1. 抛物线的定义:先从一个有趣的实验说起,仔细讲解实验的过程,让学生从实验的过程中发现抛物线的特点,从中学生可以自己总结出抛物线的定义:平面上与一个定点F 和一条定直线l(F 不在l 上)的距离相等的点的轨迹叫做抛物线。
点F 叫做抛物线的焦点。
定直线l 叫做抛物线的准线。
同时强调抛物线定义也是抛物线的性质即:是抛物线上的点就满足到焦点距离等于到准线的距离。
2. 抛物线标准方程的推导:求一般曲线的方程(一般步骤):1.建系2.设点3列式4.化简 建立抛物线的坐标系(由学生讨论)过点F 做准线L 的垂线,垂足为K 。
以直线KF 为x 轴,线段KF 的中垂线为y 轴建立直角坐标系。
设︱KF ︱= p,则焦点F 的坐标是(2p ,0),准线l 的方程为2p x -=设点M 的坐标为(x ,y ),由定义可知MC MF =所以2)2(22p x y p x +=+-化简得到)0(22>=p px y 3. 抛物线的标准方程:我们把方程 )0(22>=p px y 叫做抛物线的标准方程。
其中p 为正常数,它的几何意义是:焦点到准线的距离(即|KF|)。
一.课题:抛物线及其标准方程(1)二.教学目标:1.使学生掌握抛物线的定义、抛物线的标准方程及其推导过程.2.要求学生进一步熟练掌握解析几何的基本思想方法,提高分析、对比、概括、转化等方面的能力.3.通过一个简单实验引入抛物线的定义,可以对学生进行理论来源于实践的辩证唯物主义思想教育.三.教学重、难点:1. 重点:抛物线的定义和标准方程.(解决办法:通过一个简单实验与椭圆、双曲线的定义相比较引入抛物线的定义;通过一些例题加深对标准方程的认识).2. 难点:抛物线的标准方程的推导.(解决办法:由三种建立坐标系的方法中选出一种最佳方法,避免了硬性规定坐标系.)四、教学过程(一)导出课题:我们已学习了圆、椭圆、双曲线三种圆锥曲线.今天我们将学习第四种圆锥曲线——抛物线,以及它的定义和标准方程.课题是“抛物线及其标准方程”.请大家思考两个问题:问题1:同学们对抛物线已有了哪些认识?在物理中,抛物线被认为是抛射物体的运行轨道;在数学中,抛物线是二次函数的图象?问题2:在二次函数中研究的抛物线有什么特征?在二次函数中研究的抛物线,它的对称轴是平行于y轴、开口向上或开口向下两种情形.引导学生进一步思考:如果抛物线的对称轴不平行于y轴,那么就不能作为二次函数的图象来研究了.今天,我们突破函数研究中这个限制,从更一般意义上来研究抛物线.(二)抛物线的定义1.回顾:平面内与一个定点F的距离和一条定直线l的距离的比是常数e的轨迹,当0<e<1时是椭圆,当e>1时是双曲线,那么当e=1时,它又是什么曲线?2.简单实验如图2-29,把一根直尺固定在画图板内直线l的位置上,一块三角板的一条直角边紧靠直尺的边缘;把一条绳子的一端固定于三角板另一条直角边上的点A,截取绳子的长等于A 到直线l的距离AC,并且把绳子另一端固定在图板上的一点F;用一支铅笔扣着绳子,紧靠着三角板的这条直角边把绳子绷紧,然后使三角板紧靠着直尺左右滑动,这样铅笔就描出一条曲线,这条曲线叫做抛物线.反复演示后,请同学们来归纳抛物线的定义,教师总结.3.定义:平面内与一定点F和一条定直线l的距离相等的点的轨迹叫做抛物线(定点F不在定直线l上).定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.(三)抛物线的标准方程设定点F到定直线l的距离为p(p为已知数且大于0).下面,我们来求抛物线的方程.怎样选择直角坐标系,才能使所得的方程取较简单的形式呢?让学生议论一下,教师巡视,启发辅导,最后简单小结建立直角坐标系的几种方案:方案1:(由第一组同学完成,请一优等生演板.)以l为y轴,过点F与直线l垂直的直线为x轴建立直角坐标系(图2-30).设定点F(p,0),动点M的坐标为(x,y),过M作MD⊥y轴于D,抛物线的集合为:p={M||MF|=|MD|}.化简后得:y2=2px p2(p>0).方案2:(由第二组同学完成,请一优等生演板)以定点F为原点,平行l的直线为y轴建立直角坐标系(图2-31).设动点M的坐标为(x,y),且设直线l的方程为x=-p,定点F(0,0),过M作MD⊥l于D,抛物线的集合为:p={M||MF|=|MD|}.化简得:y2=2px+p2(p>0).方案3:(由第三、四组同学完成,请一优等生演板.)取过焦点F且垂直于准线l的直线为x轴,x轴与l交于K,以线段KF的垂直平分线为y轴,建立直角坐标系(图2-32).抛物线上的点M(x,y)到l的距离为d,抛物线是集合p={M||MF|=d}.化简后得:y2=2px(p>0).比较所得的各个方程,应该选择哪些方程作为抛物线的标准方程呢?引导学生分析出:方案3中得出的方程作为抛物线的标准方程.这是因为这个方程不仅具有较简的形式,而方程中的系数有明确的几何意义:一次项系数是焦点到准线距离的2倍.由于焦点和准线在坐标系下的不同分布情况,抛物线的标准方程有四种情形(列表如下):由学生讲清为什么会出现四种不同的情形,四种情形中P>0;并指出图形的位置特征和方程的形式应结合起来记忆.即:当对称轴为x轴时,方程等号右端为±2px,相应地左端为y2;当对称轴为y轴时,方程等号的右端为±2py,相应地左端为x2.同时注意:当焦点在正半轴上时,取正号;当焦点在负半轴上时,取负号.(四)四种标准方程的应用例题:(1)已知抛物线的标准方程是y2=6x,求它的焦点坐标和准线方程;(2)已知抛物线的焦点坐标是F(0,-2),求它的标准方程.方程是x2=-8y.练习:根据下列所给条件,写出抛物线的标准方程:(1)焦点是F(3,0);答案是:(1)y2=12x;(2)y2=-x;(3)焦点到准线的距离是2.(3)y2=4x,y2=-4x,x2=4y,x2=-4y.由三名学生演板,教师予以订正.这时,教师小结一下:由于抛物线的标准方程有四种形式,且每一种形式中都只含一个系数p,因此只要给出确定p的一个条件,就可以求出抛物线的标准方程.当抛物线的焦点坐标或准线方程给定以后,它的标准方程就唯一确定了;若抛物线的焦点坐标或准线方程没有给定,则所求的标准方程就会有多解.(五)小结:本次课主要介绍了抛物线的定义,推导出抛物线的四种标准方程形式,并加以运用.五、作业:到准线的距离是多少?点M的横坐标是多少?2.求下列抛物线的焦点坐标和准线方程:(1)x2=2y;(2)4x2+3y=0;(3)2y2+5x=0;(4)y2-6x=0.3.根据下列条件,求抛物线的方程,并描点画出图形:(1)顶点在原点,对称轴是x轴,并且顶点与焦点的距离等于6;(2)顶点在原点,对称轴是y轴,并经过点p(-6,-3).4.求焦点在直线3x-4y-12=0上的抛物线的标准方程.作业答案:3.(1)y2=24x,y2=-2x,(2)x2=-12y(图略)4.分别令x=0,y=0得两个焦点F1(0,-3),F2(4,0),从而可得抛物线方程为x2=-12y或y2=16x.一.课题:抛物线及其标准方程(2)二.教学目标:1.会用定义法、直译法、参数法,求与抛物线有关的动点的轨迹方程;2.会判断直线与抛物线的位置关系;3.会求解与抛物线的焦点弦有关的问题.三.教学重、难点:目标1,2,3。
《抛物线及其标准方程》教案(公开课《抛物线及其标准方程》教案(公开课)一、教学内容本节课选自《解析几何》教材第四章第一节,主要内容包括抛物线的定义、性质及其标准方程的推导和应用。
二、教学目标1. 理解抛物线的定义,掌握抛物线的性质。
2. 学会推导抛物线的标准方程,并能解决实际问题。
3. 能够运用抛物线标准方程解决几何问题和实际应用。
三、教学难点与重点重点:抛物线的定义、性质及其标准方程。
难点:抛物线标准方程的推导和应用。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:直尺、圆规、练习本。
五、教学过程1. 实践情景引入2. 知识讲解(1) 抛物线的定义:平面内到一个定点F的距离等于到一条定直线l的距离的点的轨迹。
(2) 抛物线的性质:① 对称性;② 焦点、准线;③ 直线与抛物线的交点;④ 平面几何关系。
(3) 抛物线的标准方程:y^2 = 2px (p > 0) 或 x^2 = 2py (p > 0)。
3. 例题讲解(1) 求抛物线y^2 = 4x的焦点和准线。
(2) 已知抛物线x^2 = 8y,求过点P(2,3)且与抛物线相切的直线方程。
4. 随堂练习(1) 求抛物线y^2 = 12x的焦点、准线及对称轴。
(2) 已知抛物线x^2 = 16y,求过点A(4,2)且与抛物线相交的直线方程。
5. 课堂小结六、板书设计1. 定义2. 性质3. 标准方程4. 例题解析5. 随堂练习七、作业设计1. 作业题目(1) 求抛物线y^2 = 20x的焦点、准线及对称轴。
(2) 已知抛物线x^2 = 18y,求过点B(3,2)且与抛物线相切的直线方程。
2. 答案(1) 焦点:F(5,0),准线:x = 5,对称轴:y轴。
(2) 直线方程:y = 4/3x 2/3。
八、课后反思及拓展延伸本节课通过实践情景引入、知识讲解、例题讲解、随堂练习等环节,使学生掌握了抛物线的定义、性质和标准方程。
《抛物线及其标准方程》教案(公开课《抛物线及其标准方程》教案(公开课)一、教学内容本节课的内容选自高中数学教材选修22第三章第一节,主要讲述抛物线的定义及其标准方程。
具体内容包括:1. 抛物线的定义及其简单性质;2. 抛物线的标准方程推导;3. 抛物线标准方程的应用。
二、教学目标1. 理解抛物线的定义,掌握抛物线的简单性质;2. 学会推导抛物线的标准方程,并能应用于实际问题;3. 培养学生的空间想象能力和逻辑思维能力。
三、教学难点与重点重点:抛物线的定义、标准方程及其应用。
难点:抛物线标准方程的推导过程,以及在实际问题中的应用。
四、教具与学具准备1. 教具:多媒体教学设备、投影仪、黑板、粉笔;2. 学具:直尺、圆规、练习本。
五、教学过程1. 实践情景引入利用多媒体展示实际生活中的抛物线实例,如抛物线运动轨迹、拱桥等,引导学生观察并思考抛物线的特点。
2. 抛物线的定义及性质(2)讲解抛物线的性质,如对称性、顶点等。
3. 抛物线标准方程的推导(1)教师引导学生通过实际例题,推导出抛物线的标准方程;(2)讲解抛物线标准方程的推导过程,强调理解推导方法。
4. 例题讲解选取典型例题,讲解抛物线标准方程的应用,引导学生学会解决实际问题。
5. 随堂练习设计具有代表性的练习题,让学生巩固所学知识,及时发现问题并解答。
6. 小结六、板书设计1. 抛物线的定义;2. 抛物线的性质;3. 抛物线标准方程的推导过程;4. 典型例题及解题步骤。
七、作业设计1. 作业题目:(1)已知抛物线y^2=8x的焦点为F(2,0),求该抛物线的准线方程;(2)已知抛物线y=2x^2的焦点为F(0,1/8),求该抛物线的标准方程。
2. 答案:(1)准线方程:x=2;(2)标准方程:x^2=1/8y。
八、课后反思及拓展延伸1. 反思:本节课学生对抛物线的定义和性质掌握较好,但在推导抛物线标准方程时,部分学生存在困难。
在今后的教学中,应加强此类问题的讲解和练习。
《抛物线及其标准方程》教案《抛物线及其标准方程》教案教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。
下面是小编整理的《抛物线及其标准方程》教案,欢迎大家分享。
《抛物线及其标准方程》教案篇1一、目标1.掌握抛物线的定义、几何图形,会推导抛物线的标准方程2.能够利用给定条件求抛物线的标准方程3.通过“观察”、“思考”、“探究”与“合作交流”等一系列数学活动,培养学生观察、类比、分析、概括的能力以及逻辑思维的能力,使学生学会数学思考与推理,学会反思与感悟,形成良好的数学观。
并进一步感受坐标法及数形结合的思想二、重点抛物线的定义及标准方程三、教学难点抛物线定义的形成过程及抛物线标准方程的推导(关键是坐标系方案的选择)四、教学过程(一)复习旧知在初中,我们学习过了二次函数,知道二次函数的图象是一条抛物线。
例如:(1),(2)的图象(展示两个函数图象):(二)讲授新课1.课题引入在实际生活中,我们也有许多的抛物线模型,例如1965年竣工的密西西比河河畔的萨尔南拱门,它就是用不锈钢铸成的抛物线形的建筑物。
到底什么样的曲线才可以称做是抛物线?它具有怎样的几何特征?它的方程是什么呢?这就是我们今天要研究的内容.(板书:课题2.4.1抛物线及其标准方程)2.抛物线的定义信息技术应用(课堂中展示画图过程)先看一个实验:如图:点F是定点,是不经过点F的定直线,H是上任意一点,过点H作,线段FH的垂直平分线交MH于点M。
拖动点H,观察点M的轨迹,你能发现点M满足的几何条件吗?(学生观察画图过程,并讨论)可以发现,点M随着H运动的过程中,始终有MH=MF,即点M 与定点F和定直线的距离相等。
(也可以用几何画板度量MH,MF的值)(定义引入):我们把平面内与一个定点F和一条定直线(不经过点F)距离相等的点的轨迹叫做抛物线,点F叫做抛物线的焦点,直线叫做抛物线的准线。
《抛物线及其标准方程》教案(公开课《抛物线及其标准方程》教案(公开课)一、教学内容本节课选自高中数学教材选修22第二章第四节《抛物线及其标准方程》。
具体内容包括:1. 抛物线的定义及其简单性质;2. 抛物线的标准方程:y²=2px(p>0)和x²=2py(p>0);3. 抛物线的图形及其在实际问题中的应用。
二、教学目标1. 让学生掌握抛物线的定义、标准方程及其简单性质;2. 培养学生运用抛物线知识解决实际问题的能力;3. 培养学生的观察能力、空间想象能力和逻辑思维能力。
三、教学难点与重点1. 教学难点:抛物线标准方程的推导,抛物线图形的识别;2. 教学重点:抛物线的定义,标准方程及其性质。
四、教具与学具准备1. 教具:多媒体课件,黑板,粉笔;2. 学具:直尺,圆规,量角器,练习本。
五、教学过程1. 实践情景引入(1)展示图片:篮球投篮、投掷铅球、卫星轨道等;(2)提问:这些情景中,物体的运动轨迹有什么共同特点?2. 知识讲解(1)抛物线的定义:物体在只受重力作用下,从一点出发,经过一段时间后,落回到这一点,且在运动过程中始终受到同一平面的约束,这样的运动轨迹称为抛物线;(2)抛物线的标准方程:y²=2px(p>0)和x²=2py(p>0);(3)抛物线的性质:对称性、开口方向、顶点、焦点、准线等。
3. 例题讲解(1)求抛物线y²=4x的焦点、顶点和准线;(2)已知抛物线的焦点为F(1,0),求该抛物线的标准方程。
4. 随堂练习(2)已知抛物线的焦点和顶点,求其标准方程。
5. 小结六、板书设计1. 定义:抛物线是物体在只受重力作用下,从一点出发,经过一段时间后,落回到这一点,且在运动过程中始终受到同一平面的约束的运动轨迹;2. 标准方程:y²=2p x(p>0)和x²=2py(p>0);3. 性质:对称性、开口方向、顶点、焦点、准线;4. 例题:抛物线y²=4x的焦点、顶点和准线;已知焦点求抛物线标准方程。
高中数学优质课教案范文:高二抛物线及其标准方程教学设计高中数学抛物线公式高二《抛物线及其标准方程》教学设计附范例2:本节课的教学设计本节教材是在学生学习了椭圆、双曲线之后,因此在教学中,要时时注意与前两种曲线进行对比,求曲线方程的步骤、建系方法都是学生已经理解和掌握了的,我充分调动学生已有的知识,引导学生把新旧知识有机融合,掌握知识的系统结构。
一、教学理念在“以学生发展为核心”的理念下,不仅要关注学生“学会”知识,而且还要特别关注学生“会学”知识。
本节课在实验的基础上,以问题为核心,创设情景,通过教师适时的引导,生生间、师生间的交流互动,启迪学生的思维,使学生通过自己的分析^p 、反思、纠正,不断完善并形成抛物线的概念,推导抛物线的方程,建构自己的知识体系,提高获取知识的能力,尝试合作学习的快乐,体验成功的喜悦。
在这一过程中,教师只是一名组织者,引导者,促进者。
二、教学方法为了充分调动学生的积极性,使学生变被动学习为主动学习,我采用了“引导探究”式的教学模式,在课堂教学过程中,我始终贯彻“教师为主导,学生为主体,探究为主线,思维为核心”的教学思想,通过引导学生实验、观察、比较、分析^p 和概括,使学生充分地动手、动口、动脑,参与教学的全过程。
三、教学手段直尺—三角板教具在本节课的概念形成过程中起到非常重要的作用,为学生的自主探究活动提供了实物载体,相关的实验材料可向学生预先布置,做好准备,计算机为教师进行教学演示和学生的观察提供了平台,二者有机结合,协调发挥作用,使课堂更加紧凑有序。
四、教学设计为了突破本节课的难点——抛物线概念的形成,我注重与同学们所熟知的二次函数对比,通过变换坐标系的建立,一方面强化学生求曲线方程的基本功,另一方面与二次函数联系起来,使学生有一种“顿悟”的感觉。
在每个阶段的教学中精心设计问题情景,为学生自主探究和发现创造条件。
省心WTT声明:1、本网站所刊载的各类形式(包括但不仅限于文字、图片、图表)的作品全部来自互联网、百度和由您提供,如您(单位或个人)认为本网站某部分内容有侵权嫌疑,敬请立即通知我们,我们将在第一时间予以更改或删除。
3.2.1 抛物线的标准方程内容分析:一、复习引入:1椭圆的第二定义:2. 双曲线的第二定义:3.问题:到定点距离与到定直线距离之比是定值e 的点的轨迹,当0<e<1时是椭圆,当e>1时是双曲线。
此时自然想到,当e=1时轨迹是什么?二、讲解新课:1. 抛物线定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线2.推导抛物线的标准方程:3.抛物线的准线方程:如图所示,分别建立直角坐标系,设出|KF|=p (p >0),则(1))0(22>=p px y , 焦点: 准线l :(2))0(22>=p py x , 焦点: , 准线l :(3))0(22>-=p px y , 焦点: 准线l :(4) )0(22>-=p py x , 焦点: 准线l :相同点:(1)抛物线都过原点;(2)对称轴为坐标轴;(3)准线都与对称轴垂直,垂足与焦点在对称轴上关于原点对称. 它们到原点的距离都等于一次项系数绝对值的41,即242p p = 不同点:(1)图形关于X 轴对称时,X 为一次项,Y 为二次项,方程右端为px 2±、左端为2y ;图形关于Y 轴对称时,X 为二次项,Y 为一次项,方程右端为py 2±,左端为2x .(2)开口方向在X 轴(或Y 轴)正向时,焦点在X 轴(或Y 轴)的正半轴上,方程右端取正号;开口在X 轴(或Y 轴)负向时,焦点在X 轴(或Y 轴)负半轴时,方程右端取负号.三、讲解范例:例1 (1)已知抛物线标准方程是x y 62=,求它的焦点坐标和准线方程.(2)已知抛物线的焦点坐标是F (0,-2),求它的标准方程.例2 已知抛物线的标准方程是(1)y 2=12x ,(2)y =12x 2,求它的焦点坐标和准线方程.例3 求满足下列条件的抛物线的标准方程:(1)焦点坐标是F (-5,0)(2)经过点A (2,-3)四、课堂练习:1.求下列抛物线的焦点坐标和准线方程.(1)y 2=8x (2)x 2=4y (3)2y 2+3x =0 (4)2ax y =2.根据下列条件写出抛物线的标准方程.(1)焦点是F (-2, 0).(2)准线方程是31=y (3)焦点到准线的距离是4,焦点在y 轴上.(4)经过点A (6,-2).3.抛物线x 2=4y 上的点p 到焦点的距离是10,求p 点坐标.课堂练习答案:1.(1)F (2,0),x =-2 (2)(0,1),y =-1(3)(83-,0),x =83 (4)(0,23-),y =23 2.(1)y 2=-8x(2)x 2=-34y (3)x 2=8y 或x 2=-8y (4)x y 322= 或 y x 182-= . 3.(±6,9).点评:练习时注意(1)由焦点位置或准线方程正确判断抛物线标准方程的类型;(2)p 表示焦点到准线的距离故p >0;(3)根据图形判断解有几种可能.五、小结 :小结抛物线的定义、焦点、准线及其方程的概念;六、课后作业:七、板书设计(略)八、课后记:。
抛物线的标准方程教案教案:抛物线的标准方程一、教学目标:1. 理解抛物线的标准方程的含义;2. 掌握抛物线的标准方程的推导方法;3. 能够根据已知的条件,列出抛物线的标准方程。
二、教学内容:1. 抛物线的定义和性质;2. 抛物线的标准方程的推导;3. 抛物线的标准方程的应用。
三、教学步骤:1. 引入:通过问答的方式引出抛物线的概念和性质。
示例问题:什么是抛物线?抛物线有哪些性质?2. 推导抛物线的标准方程:(1)将抛物线的焦点设为F,准线设为L;(2)设抛物线上一点P(x, y),到焦点F的距离为PF,到准线L的距离为PM;(3)根据焦准定理可知,PF = PM;(4)根据距离公式可知,PF = √((x-a)² + (y-b)²) ,PM = x + c;(5)对比PF和PM的表达式,得到抛物线的标准方程为:(x-a)² = 4p(y-b) ,其中 p = -c/2。
3. 求解抛物线的标准方程:(1)已知顶点坐标和焦点坐标,求解抛物线的标准方程;(2)已知顶点坐标和准线方程,求解抛物线的标准方程。
4. 练习和应用:(1)通过练习题巩固学生对抛物线标准方程的理解和掌握程度;(2)应用抛物线标准方程解决实际问题,如抛物线轨迹的确定等。
四、课堂互动:1. 利用白板或幻灯片,展示抛物线的图形,并引导学生观察抛物线的形状和特点。
2. 设计互动问题,让学生进行探讨和回答。
如:已知抛物线顶点为(2, 3),焦点为(-1, 0),求解抛物线的标准方程。
五、教学总结:1. 回顾抛物线的定义和性质;2. 概括抛物线的标准方程的推导过程;3. 总结抛物线的标准方程的应用场景。
六、作业布置:1. 完成课堂上的习题;2. 提供一个实际问题,要求学生列出抛物线的标准方程,并解答问题。
七、板书设计:抛物线的标准方程:(x-a)² = 4p(y-b)注:a, b为抛物线的顶点坐标,p为焦点到准线的距离。
教学目标:知识目标:1、掌握抛物线的定义和标准方程。
2、能根据抛物线的标准方程,写出它的焦点坐标和准线方程。
能力目标:能根据简单的已知条件求抛物线的标准方程。
情感目标:能根据老师的引导积极探索问题的规律。
教学重点:分清抛物线四种标准方程、焦点坐标和准线方程。
教学难点:利用抛物线的定义探索解决一些新问题。
教学方法及手段:启发引导 教学过程: 一、课程引入 1、 平面内与两个定点的距离相等的点的轨迹是什么? 2、与两条相交直线的距离相等的点的轨迹是什么?问:与一个定点和一条定直线的距离相等的点的轨迹是什么?(学生探索) 教师flash 课件演示(解释原理) 二、新课解析 1、定义:(板书课题)平面内与一个定点F 和一条定直线L 的距离相等的点的轨迹是抛物线。
点F 叫做抛物线的焦点。
直线L 叫抛物线的准线生活中的抛物线有哪些?太阳灶,抛射物体的运行轨道,二次函数的图象等。
但在二次函数中研究的抛物线,它的对称轴是平行于y 轴、开口向上或开口向下两种情形.如果抛物线的对称轴不平行于y 轴,那么就不能作为二次函数的图象来研究了.今天,我们突破函数研究中这个限制,从更一般意义上来研究抛物线.2、推导抛物线的标准方程:(先复习求轨迹方程的方法和步骤;如何建系) 如图所示,建立直角坐标系系,设|KF|=p (p >0),那么焦点F 的坐标为)0,2(p ,准线l 的方程为2p x -=,设抛物线上的点M (x,y ),则有2|)2(22p x y p x +=+-化简方程得 (022>=p pxy方程()022>=p pxy 叫做抛物线的标准方程它表示的抛物线的焦点在x 轴的正半轴上,焦点坐标是F (2p ,0),它的准线方程是2px -=说明:抛物线,由于它在坐标系的位置不同,方程也不同,有四种不同的情况。
这四种抛物线的图形、标准方程、焦点坐标以及准线方程如下(2)对称轴为坐标轴;(3)准线都与对称轴垂直,垂足与焦点在对称轴上关于原点对称 p 是焦点到准线的距离不同点:标准方程中一次项的变量决定焦点在哪条轴上,系数的”+”,”-”决定焦点在正半轴还是负半轴三、例题精讲 例1:(1) 已知抛物线标准方程是x y 62=,求它的焦点坐标和准线方程;(2)已知抛物线的方程是y = -6x 2,求它的焦点坐标和准线方程; (3)已知抛物线的焦点坐标是F (0,-2), 求它的标准方程。
教学题目:抛物线的标准方程
教学目标:
1. 能力与技能:
(1)掌握抛物线的定义,理解抛物线的发生过程
(2)掌握抛物线的四种标准方程、图像、焦点、准线之间的关系
(3)会用待定系数法确定抛物线标准方程。
2. 过程与方法:
(1) 有实际问题引入要研究的课题,发展学生的实践能力,通过实验使学生
发现抛物线的形成过程。
(2) 求抛物线的焦点坐标和准线方程中贯彻数形结合的思想。
(3) 掌握待定系数法在方程中的应用。
3. 情感与价值观:
让学生学会细心观察周围的事物,数学来源于生活,又为生活服务。
教学过程:
一.引入:探照灯、汽车前灯、卫星天线、激光
望远镜都是利用抛物线原理制成的,因此在生活当
中,抛物线是一个用途非常广泛的曲线。
下面简单
介绍抛物线的光学反射原理,引起学生的兴趣。
从
而引出课题:抛物线的标准方程。
二.新课:
1. 抛物线的定义:先从一个有趣的实验说起,仔细讲解实验的过程,让学生从实验的过程中发现抛物线的特点,从中学生可以自己总结出抛物线的定义:平面上与一个定点F 和一条定直线l(F 不在l 上)的距离相等的点的轨迹叫做抛物线。
点F 叫做抛物线的焦点。
定直线l 叫做抛物线的准线。
同时强调抛物线定义也是抛物线的性质即:是抛物线上的点就满足到焦点距离等于到准线的距离。
2. 抛物线标准方程的推导:
求一般曲线的方程(一般步骤):1.建系2.设点3列式4.化简
建立抛物线的坐标系(由学生讨论)过点F 做准线L 的垂线,垂足为K 。
以直线KF 为x 轴,线段KF 的中垂线为y 轴建立直角坐标系。
设︱KF ︱= p,则焦点F 的坐标是(2p ,0),准线l 的方程为2
p x -=
设点M 的坐标为(x ,y ),由定义可知MC MF =所以2
)2(22p x y p x +=+-
化简得到)0(22>=p px y 3. 抛物线的标准方程:我们把方程
)0(22>=p px y 叫做抛物线的标准方程。
其中p 为正常数,它的几何意义是:焦点到准线的距离(即|KF|)。
4. 四种抛物线标准方程形式:
根据上表中抛物线的标准方程的不同形式与图形、焦点坐标、准线方程对应关系,如何判断抛物线的焦点位置和开口方向?(由学生讨论)
第一:(焦点位置)一次项的变量如为X (或Y) 则X 轴(或Y 轴)为抛物线的对称轴,焦点就在对称轴上!
第二:(开口方向)一次的系数决定了开口方向。
5. 例题:(过程见附录)
例1:求下列抛物线的焦点坐标与准线方程:
(1)、y x 82-=; (2)、28y x =;(3)、052=-x y
例2:根据下列条件,写出抛物线的标准方程:
(1)、焦点坐标是F (0,-2);(2)、准线方程是2
1=
x ;(3)、焦点到准线的距离是2
例3:如图,汽车前灯反射镜与轴截面的交线是抛物线的一部分,灯口所在的圆面与反射镜的轴垂直,灯泡位于抛物线的焦点处。
已知灯口直径是24cm,灯深10cm,求
灯泡离反射镜的顶点的距离。
思考:求过点A(-3,2)的抛物线的标准方程。
6.总结:(由学生自行总结)
1、抛物线的定义。
2、抛物线四种标准方程,焦点坐标和准线方程及p的几何意义。
(数形结合思想的
应用)
3、用待定系数法求解抛物线的标准方程。
课后记:本节课的设计思路是重点放在事物的发生和发展过程,让学生在有趣的实验中体会到定义的本质,在整个课堂中学学生是课堂的主体学生发现问题—研究问题—解决问题—发展问题—最后能够和开始的引入呼应,解决一道关于汽车前灯灯泡位置的问题,这样就达到了很好的呼应效果,使整堂课完整充实,前后呼应,理论与实践相结合,达到了较好的效果。
学生的感觉是由浅入深,由实践抽象到理论再回归实践,非常有趣。