第三章_动力学方程的三种基本形式
- 格式:ppt
- 大小:11.17 MB
- 文档页数:45
动力学方程1. 引言动力学方程是研究物体在运动中受到的力学作用的数学描述。
它是物理学中非常重要的概念,广泛应用于各个领域,包括经济学、工程学、生物学等。
本文将介绍动力学方程的基本概念、求解方法以及应用等方面的内容。
2. 动力学方程的定义动力学方程描述了物体在运动过程中所受到的力学作用。
一般来说,动力学方程可以分为牛顿第二定律和拉格朗日方程两种形式。
2.1 牛顿第二定律牛顿第二定律是描述质点运动的基本定律之一。
它的数学表达式为:F = ma其中,F表示物体所受的合力,m表示物体的质量,a表示物体的加速度。
根据牛顿第二定律,我们可以得到物体在受到外力作用下的运动方程。
2.2 拉格朗日方程拉格朗日方程是描述物体运动的另一种形式,它基于能量守恒的原理。
拉格朗日方程的数学表达式为:d/dt ( ∂L/∂(dq/dt) ) - ∂L/∂q = 0其中,L表示物体的拉格朗日函数,q表示广义坐标,t表示时间。
拉格朗日方程可以从运动的作用量原理推导得到,它可以描述多自由度、非洛加多力学系统的运动。
3. 动力学方程的求解方法求解动力学方程是研究物体运动的关键步骤之一。
常见的求解方法主要有解析解法和数值解法两种。
3.1 解析解法解析解法是通过数学计算的方法,求得动力学方程的精确解。
在一些简单的情况下,动力学方程可以直接求解得到解析解。
例如,简谐振动的运动方程可以通过解微分方程得到解析解。
3.2 数值解法数值解法是通过数值计算的方法,求得动力学方程的近似解。
数值解法通常采用数值求解微分方程的方法,例如欧拉法、龙格-库塔法等。
数值解法在复杂的情况下具有更好的适用性,但是精度相对较低。
4. 动力学方程的应用动力学方程广泛应用于各个领域,下面将简要介绍一些典型的应用。
4.1 经济学在经济学中,动力学方程可以用于描述经济系统的运动规律。
例如,经济增长模型可以通过动力学方程来描述经济发展的速度和方向,从而为经济政策制定提供理论依据。
第三章 化学反应动力学的计算化学反应的速度各不相同,有的反应速度极快,只要几个毫微秒就达到平衡(接近扩散速度,如无机酸碱中和),有的反应速度极慢,几乎看不到变化(如自然界的某些变化)。
大部分有机化学反应可用常规方法测量,对某些快速反应则可用停留法、驰豫法等测量。
不论反应速度的快慢,动力学方程都是类似的。
一、化学反应动力学方程反应物浓度随时间的变化绝大部分不是线性关系,而是一条曲线,见图3-1。
反应速度公式可用微分方程来表示。
具有简单级数的化学反应的反应速度公式可用积分式表示:一级 如:0AA1Adc A C =a, -=k c dt 生成物:,㏑C A =㏑a –K 1t 二级 A+A →产物 C A 0=a 2A 2A 2A d c 11-k C , =+k t d t c a对于反应 1-1k k A B 这一可逆反应初始条件 t=0 a 0 时间t 时 t=t a-x x达到平衡时,B 的浓度为X e ,则可逆反应的速度积分式为: 级数:1-1 1-10k A A e e 1A -1B k 0e 0C =a dc x xA B=-k C +k C : =kt dt a x -xC =0ln 1-21-10Ak0A e e e B 1A -1B C k e e 0CC =a dc x ax +x(a-x )A B+C C =0=-k C +k C C : =kt dt 2a-x a(x -x)C =0ln 二、常微分方程的解化学反应动力学方程是用微分方程表示的,对于简单的反应,可直接求得微分方程的解。
微分方程:()(1)(,,,......)......(1)n n y f x y y y -'=在区间a<x<b 的解,是指()y x ϕ=,这样一个函数,在所述区间内存在导数()(),(),......()n x x x ϕϕϕ'''。
且对于区间a<x<b 内的每一个x ,等式(1)都成立。
Chapter 3 流体动力学基本方程例如求解定常均匀来流绕流桥墩时的桥墩受力问题:流场和桥墩表面受力由(边界条件+控制方程组)决定。
本章任务建立控制方程组,确定边界条件的近似描述和数学表达。
I 质量连续性方程(质量守恒方程) I-1方程的导出物质体(或系统)的质量恒定不变——质量守恒假设。
质量守恒假设对于很多流动问题是良好近似,分子热运动引起的系统与外界的物质交换可忽略不计。
在此假设下,对物质体τ有0dd dtτρτ=⎰。
根据输运定理,设t 时刻该系统所占控制体为CV ,对应控制面CS ,则有0CVCSd v ds tρτρ∂+⋅=∂⎰⎰⎰——质量守恒方程积分形式。
上式亦表明,CV 内单位时间内的质量减少=CS 上的质量通量。
由奥高公式得()CSCVv ds v d ρρτ⋅=∇⋅⎰⎰⎰,于是有()0CV v d t ρρτ∂⎡⎤+∇⋅=⎢⎥∂⎣⎦⎰。
考虑到τ的任意性,故有()0v t ρρ∂+∇⋅=∂,即 0d v dtρρ+∇⋅= ——质量守恒方程微分形式 I-2各项意义分析: 1)dt d ρ——流体微团密度随时间的变化率;定常流动0=∂∂t ρ;不可压缩流动0=dt d ρ;均质流体的不可压缩流动.const ρ=。
2)由0=dtmd δ(m δ为微团的质量)知11d d dt dt ρδτρδτ=-(δτ为该微团t 时刻体积),从而知v ∇⋅=流体微团体积随时间的相对变化率,即体膨胀率。
3)不可压缩流体0d dtρ=,故有 0v ∇⋅=。
由奥高公式有CVCSv ds vd τ⋅=∇⋅⎰⎰⎰,可见对于不可压缩流动,任意闭合曲面上有0CSv ds ⋅=⎰⎰。
不可压缩流动满足的0v ∇⋅=或0CSv ds ⋅=⎰⎰是对速度场的一个约束。
例1、1)定常流场中取一段流管,则由0CSv ds ⋅=⎰⎰易知:222111S V S V ρρ=;如为均质不可压缩流动,则1122V S V S =。
量子力学中的动力学方程量子力学是描述微观粒子行为的理论框架,其核心是动力学方程。
动力学方程描述了体系在时间演化中的规律,而量子力学的动力学方程则基于薛定谔方程和海森堡方程。
本文将探讨量子力学中的动力学方程及其应用。
1. 薛定谔方程薛定谔方程是量子力学中最重要的动力学方程之一,它描述了量子体系的时间演化。
薛定谔方程的一般形式为:iℏ∂Ψ/∂t = HΨ其中,i是虚数单位,ℏ是约化普朗克常数,Ψ是波函数,H是哈密顿算符。
薛定谔方程说明了波函数随时间的演化符合线性定律。
2. 海森堡方程与薛定谔方程不同,海森堡方程是描述量子体系的运动方程,它不涉及波函数。
海森堡方程的一般形式为:dA/dt = (1/iℏ) [A, H]其中,A是动力学变量的算符,H是哈密顿算符。
海森堡方程描述了算符随时间的演化。
3. 动力学方程的应用薛定谔方程和海森堡方程是量子力学中重要的基本方程,它们在各个领域的研究中被广泛应用。
3.1. 原子物理学在原子物理学中,动力学方程用于描述原子的能级结构和电子的行为。
通过求解薛定谔方程,可以得到原子的能级和波函数分布,进而理解光谱现象和原子之间的相互作用。
3.2. 凝聚态物理学在凝聚态物理学中,动力学方程被用于研究固体材料的电子结构和宏观性质。
通过薛定谔方程的数值解和近似方法,可以计算出电子的能带结构、磁性行为以及导电性等重要物理性质。
3.3. 量子计算与量子信息动力学方程在量子计算和量子信息领域起着关键作用。
通过研究量子系统的时间演化,可以实现量子计算中的逻辑操作和量子通信中的量子态传输。
4. 小结量子力学中的动力学方程,即薛定谔方程和海森堡方程,是描述量子体系时间演化的基本工具。
这些方程在原子物理学、凝聚态物理学以及量子计算与量子信息等领域中有着广泛的应用。
通过研究动力学方程,我们可以深入了解微观世界的规律,为实验验证和技术应用提供理论基础。
简而言之,“量子力学中的动力学方程”是研究量子体系时间演化的核心内容,薛定谔方程和海森堡方程是具体的数学表达式,它们在各个物理学领域中扮演着重要的角色。