流体力学第六章流体动力学积分形式基本方程-精选
- 格式:ppt
- 大小:745.56 KB
- 文档页数:22
第六章流体力学基础基本概念一、流体的粘滞性流体流动时,由于流体与固体壁面的附着力及流体本身的分子运动和内聚力,使各流体层的速度不相等。
在两个相邻流体层之间的接触面上,将产生一对阻碍两层流体相对运动的等值反向的摩擦力,叫做内摩擦力。
流体的粘滞性:流体流动时产生内摩擦力的性质。
二、理想流体与实际流体粘性流体:具有粘性的流体(实际流体)。
理想流体:忽略了粘滞性的流体。
三、流体流动的基本概念1.稳定流动与非稳定流动(1)稳定流动运动流体内任意点的速度u和压力p仅仅是空间坐标()z,的函数,而不x,y随时间变化而变化。
()zu,=,uyx()z,p,=xyp(2)非稳定流动运动流体内任意点的速度u和压力p不仅是空间坐标()z,的函数,也随x,y时间而不同。
()t z,,=u,yxu()t z,,=pp,yx2.迹线与流线(1)迹线流体质点的运动轨迹。
(2)流线流场:流体流动的空间。
流线:是流场中某一瞬间绘出的一条曲线,在这条曲线上所有各流体质点的流速矢量与该曲线相切。
流线的性质:①稳定流动时,流线形状不随时间而变化;②稳定流动时,同一点的流线始终保持不变,且流线上质点的迹线与流线重合,即流线上的质点沿流线运动;③流线既不会相交,又不能转折,只能是光滑的曲线。
假定某一瞬间有两条流线相交于M点或转折。
M处就该有两个速度矢量,这是不符合流线的定义。
3.流管、微小流速及总流(1)流管在流场中取出一段微小的封闭曲线,过这条曲线上各点引出流线,这些流线族所围成的封闭管状曲面。
(2)微小流束及总流流束:在流管中运动的流体。
微小流束:断面无穷小的流束称为微小流束。
微小流束断面上各点的运动要素相等。
流管内的流体只能在流管内流动,流管外的流体也只能在流管外流动。
伯努利方程一、理想流体的伯努利方程仅在重力作用下作稳定流动的理想流体gu g p Z g u g p Z 2//2//22222111++=++ρρ=常数1Z 和2Z :过流断面1-1和2-2距基准面0-0的高度,1u 和2u :断面1-1和2-2的流速,1p 和2p :断面1-1和2-2的压力,ρ:为流体密度。
流体动力学的积分形式基本方程 推导流体力学基本方程的根据是什么? 系统和控制体系统:由确定的流体质点所组成的流体团。
系统的特点:1)系统的边界随着流体一起运动;2)系统的边界处没有质量的交换;3)在系统的边界上,受到外界作用在系统上的表面力;4)在系统的边界上可以有能量(热或功)交换。
系统和控制体控制体相对于某个坐标系来说,固定不变的任何体积。
控制体的特点:1)控制面相对于坐标系是固定的;2)在控制面上可以有质量的交换;3)在控制面上受到控制体外物体施加在控制体内物质上的力;4)在控制面上可以有能量(内能、动能、热或功)交换。
Lagrange 型基本方程00()t M d τρτ=∫∫∫()t D M Dd D t D tτρτ=≡∫∫∫一、流体的连续方程——质量守恒对于任何坐标系都成立(不论是惯性坐标系还是非惯性坐标系)系统内总质量:在系统中不存在源或汇的条件下,系统质量不随时间变化。
0()t τρLagrange 型基本方程0000()()()n t t A t D K DV d fd p dA D t D tττρτρτ==+∫∫∫∫∫∫∫∫二、流体的运动方程——动量守恒0()t τρV在惯性坐标系中,系统的动量对于时间的变化率等于外界作用在该系统上的合力。
系统的动量:00()t K Vd τρτ=∫∫∫A 0(t )Lagrange 型基本方程000000()()())))n t t A t Dr V d r f d r p dA Dt ττρτρτ×=×+×∫∫∫∫∫∫∫∫ (((三、流体的动量矩方程在惯性坐标系中,系统对某点o 的动量矩对时间的变化率等于外界作用在该系统上所有为了对于同一点o 的力矩之和。
系统对o 点的动量矩:00()()o t M r V d τρτ=×∫∫∫0()t τρVOrA 0(t )Lagrange 型基本方程四、流体的能量方程系统的总能量E 对于时间的变化率等于单位时间内由外界传入系统的热量Q 与外力对系统所作功W 之和。
流体力学中的流体动力学方程流体力学是研究流体运动规律和性质的学科,它在能源、环境、航空航天等领域有着广泛的应用。
流体动力学方程是流体力学的基础,它描述了流体在运动过程中的物理现象和力学特性。
本文将介绍流体动力学方程的基本原理和常见的流体动力学方程。
一、连续性方程连续性方程是描述流体质点质量守恒的基本方程。
它表明流体在运动过程中,质量的流入等于流出。
连续性方程可以用数学形式表示为:∂ρ/∂t + ∇·(ρv) = 0其中,ρ是流体的密度,t是时间,v是流体的速度矢量,∇·表示散度运算符。
二、动量守恒方程动量守恒方程描述了流体质点在运动过程中动量的变化。
根据牛顿第二定律,动量守恒方程可以表示为:∂(ρv)/∂t + ∇·(ρvv) = -∇p + ∇·τ + ρg其中,p是流体的压力,τ是动态粘性应力张量,g是重力加速度。
三、能量守恒方程能量守恒方程是描述流体内能和外界能量转化的方程。
根据热力学第一定律,能量守恒方程可以表示为:∂(ρE)/∂t + ∇·(ρEv) = -∇·(pv) + ∇·(k∇T) + q其中,E是单位质量的总能量,v是流体的速度矢量,k是热传导率,T是温度,q是单位质量的内部热源。
四、状态方程流体力学中的状态方程描述了流体在热力学过程中的状态特性。
流体的状态方程通常表示为:p = ρRT其中,p是流体的压力,ρ是流体的密度,R是特定流体的气体常数,T是温度。
综上所述,流体动力学方程包括连续性方程、动量守恒方程、能量守恒方程和状态方程。
这些方程是建立在质点假设和牛顿力学基础上的,可以描述流体在运动过程中的物理现象和运动规律。
通过求解这些方程,可以得到流体的运动速度、压力分布等信息,为解决实际问题提供了重要的理论基础。
在实际应用中,为了解决流体动力学方程的复杂性,常常采用数值模拟等方法进行求解。
数值模拟可以通过离散化方程、引入数值格式和数值算法,得到流体在离散网格上的解。
流体动力学基本方程流体动力学基本方程000【本章重点】(1)稳定活动与不稳定活动的概念;(2)连续性方程式的推导及其应用;(3)柏努利方程式的推导及其应用。
【本章难点剖析】(1)流体动量通量的概念动量通量,特别是粘性动量通量是一个比较抽象而又难于理解的概念,这一概念又是纳维-斯托克斯方程推的重要基础,因此,必须讲深讲透。
此概念涉及到通量、动量、粘性力、切应力(粘性应力)、层流、紊流等基本概念和牛顿粘性定律等基础知识。
讲述此概念时,首先可以从同学们所熟悉的物理学中磁通量的概念进手,引出通量(即单位时间通过单位面积传递的量)的概念,再推演出动量通量的概念,即单位时间通过单位面积传递的动量。
然后在温习前面所学的层流与紊流以及紊流的脉动性和时均化等概念的基础上,引出对活动量通量(由流体的宏观运动引起,传递方向与流体运动方向一致)和粘性动量通量(包括层流粘性动量通量和紊流粘性动量通量,前者由层流过程流体的分子运动而引起,后者由紊流过程流体微团的横向脉动引起,它们的传递方向都与流体的宏观活动方向垂直)的概念。
值得指出的是,从量纲考虑,粘性动量通量与应力的量纲一致(kgm-1s-2),故层流粘性动量通量可以用切应力来表示,即可以用牛顿粘性定律来描述;但紊流粘性动量通量比较复杂。
(2)欧拉方程和纳维-斯托克斯方程的推导前面的流体静力学基本方程、连续性方程等的推导为欧拉方程和纳维-斯托克斯方程的推导打下了良好的微分法推导基础。
在此基础上比较轻易导出欧拉方程。
但纳维-斯托克斯方程的推导既有一定难度,又有一定深度,而且比较繁琐。
"难",难在三维粘性动量通量的概念;"深",深在二阶微分的运算和变换等数学基础;"繁",繁在数学符号多,上下标多。
因此,在讲述推导过程时,需留意上述题目。
【本章主要内容】3.1流体活动的基本概念3.1.1流场的概念及其表示方法流场是指布满运动流体的空间。
流体力学基本方程概述流体力学是研究流体的运动和力学性质的学科。
在复杂的流体运动中,我们需要基本方程来描述和求解物质的运动状态。
本文将介绍流体力学基本方程的概念、应用和求解方法。
基本概念在流体力学中,基本方程是用来描述流体运动和变形的物理和数学关系的方程。
这些方程基于守恒定律和质量、动量和能量守恒的原理。
根据流体的性质和具体情况,我们可以建立不同的基本方程。
质量守恒方程质量守恒方程描述了流体流动过程中质量的保持不变。
它可以用以下形式表示:∂ρ∂t+∇⋅(ρv)=0其中,ρ是流体的密度,v是流体的速度矢量,∂∂t 表示时间的偏导数,∇⋅表示散度运算。
这个方程表示了单位时间内流经某一体积元的质量变化与该体积元的质量流出量之和为零。
动量守恒方程动量守恒方程描述了流体运动中动量的变化。
它可以用以下形式表示:∂(ρv)∂t+∇⋅(ρv⊗v)=−∇p+∇⋅τ+ρf其中,p是流体的压力,f是外力矢量,τ是应力张量,符号⊗表示张量积。
这个方程表示了单位时间内流体动量的变化与压力、应力和外力的作用之和。
能量守恒方程能量守恒方程描述了流体运动中能量的变化。
根据流体的热力学性质和具体情况,能量守恒方程可以有不同的形式。
最常用的形式是Navier-Stokes方程。
例如在不可压流体情况下,能量守恒方程可以写作:∂(ρE)+∇⋅(ρvE)=−∇⋅q+∇⋅(τ⋅v)+ρf⋅v∂t其中,E是单位质量流体的总能量,q是单位面积的能量通量。
这个方程表示了单位时间内流体能量的变化与能量通量、应力和外力的作用之和。
基本方程的求解对于复杂的流体运动问题,基本方程的求解常常是挑战性的。
我们通常需要结合实际情况和数值方法来求解基本方程。
解析方法对于简单的流动情况,可以使用解析方法求解基本方程。
这些方法通常基于一些简化假设和边界条件,例如定常流动、恒定密度等。
解析方法可以得到精确的解析解,但通常只适用于简单的情况。
数值方法数值方法是对基本方程进行离散化和数值逼近的方法。