4.3 圆轴扭转时的变形计算
- 格式:pdf
- 大小:549.48 KB
- 文档页数:5
04、基本知识 怎样推导轴向拉压和扭转的应力公式、变形公式(供参考)同学们学习下面内容后,一定要向老师回信(****************),说出你对本资料的看法(收获、不懂的地方、资料有错的地方),以便考核你的平时成绩和改进我的工作。
回信请注明班级和学号的后面三位数。
1 * 问题的提出 ........................................................................................................................... 1 2 下面就用统一的步骤,研究轴向拉压和扭转的应力公式和变形公式。
........................... 2 3 1.1 轴向拉压杆的应力公式推导 ............................................................................................ 2 4 1.2 轴向拉压杆的变形公式推导 ............................................................................................ 4 5 1.3 轴向拉压杆应力公式和变形公式的简要推导 ................................................................ 4 6 1.4 轴向拉压杆的强度条件、刚度条件的建立 .................................................................... 4 7 2.1 扭转轴的应力公式推导 .................................................................................................... 5 8 2.2 扭转轴的变形公式推导 .................................................................................................... 7 9 2.3 扭转轴应力公式和变形公式的简要推导 ........................................................................ 7 10 2.4 扭转的强度条件、刚度条件的建立 ............................................................................ 8 11 3. 轴向拉压、扭转、梁的弯曲剪切,应力公式和变形公式推导汇总表 .. (9)1* 问题的提出在材料力学里,分析杆件的强度和刚度是十分重要的,它们是材料力学的核心内容。
圆轴扭转的受力特点和变形特点
圆轴在受到扭矩作用时,其受力特点和变形特点与直轴不同。
下面我们来详细探讨一下圆轴扭转的受力特点和变形特点。
一、受力特点
在圆轴扭转过程中,受到的力主要是扭矩。
扭矩是使物体产生转动的力,其大小可以用公式T=FT*d来计算,其中T是扭矩,F是力,T是距离,d是轴的直径。
在圆轴扭转时,扭矩会使圆轴上的横截面产生剪切应力,剪切应力的大小与扭矩成正比。
二、变形特点
圆轴在受到扭矩作用时,会产生扭转变形。
这种变形主要表现为圆轴的各个横截面发生相对转动。
在圆轴扭转时,横截面之间的距离保持不变,因此不会出现拉伸或压缩变形。
同时,由于圆轴的刚度较大,所以扭转变形量相对较小。
三、影响圆轴扭转的因素
圆轴的扭转性能受到多种因素的影响,包括材料性质、截面形状、尺寸和边界条件等。
例如,圆轴的材料强度越高,其抵抗扭矩的能力就越强;截面形状和尺寸也会影响圆轴的扭转性能;边界条件如支撑条件和固定方式也会对圆轴的扭转性能产生影响。
四、圆轴扭转的应用
圆轴的扭转性能在机械工程中有着广泛的应用。
例如,在汽车和自行车中,车轴就是一种圆轴,它们需要承受来自轮子和车轮的扭矩。
在设计这些车轴时,需要考虑其受力特点和变形特点,以确保其具有足够的强度和刚度。
此外,在建筑工程和桥梁工程中,钢结构和钢筋混凝土结构的连接节点也需要利用圆轴的扭转性能来传递力和转矩。
ab图14—17汽车传动轴轴的扭转变形和计算章节名称 轴的扭转变形和计算授课形式讲授课时2班级中专0101教学目的 掌握外力偶矩、转速和功率三者的关系,会计算轴的扭矩,知道圆轴扭转时 横截面上的应力分布规律。
教学重点 会计算轴的扭矩,知道圆轴扭转时 横截面上的应力分布规律。
教学难点 会计算轴的扭矩辅助手段课外作业课后体会机械中的轴类零件往往承受扭转,它 的受力特点是:在垂直于轴线的两个平面内受一对大小相等、方向相反的力偶作用,轴的各横截面都绕其轴线作相对转动,这种变形称为扭转变形。
一、圆轴扭转时横截面上内力的计算图14—18截面法求扭矩l 、外力偶矩:为了求出圆轴扭转时截面上的内力,必须先计算出轴上的外力偶矩,作用在轴上的外力偶矩往往不是直接给出的,而是根据给定的轴的传递功率和轴的转速算出来的,功率、转速和外力偶矩三者间的关系是:M =9550 P /n式中:P ——轴传递的功率(千瓦, KW) n ——轴的转速(转/分, r / min) M ——作用在轴上的外力偶矩(牛顿米,Nm)2、扭转时横截面上的内力——扭矩圆轴在外力偶矩的作用下,横截面上产生内力。
求内力的方法仍用截面法。
右图表示装有四个皮带轮的传动轴,在四个带轮上分别作用有主动力偶矩 M 1和从动力偶矩M 2、M 3、M 4,外力偶矩分别为 M 1=110Nm ,M 2=60Nm ,M 3=20Nm , M 4=30Nm 。
若计算 AB 段内任一截面上的内力,可假想沿该段内的任一截面1—1将轴截开,取左边部分为研究对象。
如图所示。
为了保证该段的平衡,必须以内力偶矩 Mn 1代替另一部分对被研究部分的作用, Mn 1称为扭矩。
扭矩的正负有如下规定:使右手拇指与截面法线的方向一致,若截面上的扭矩的转向与其它四指的转向相同,则扭矩取正号:反之取负号。
应用截面法时,一般都先假设截面上的扭矩为正。
扭矩的大小用平衡方程Σm=0求得,即AB 段内: Σm=0, M 1十Mn 1=0Mn 1=一M 1=一l10 Nm (设反)图14—19圆轴扭转变形图14—20圆轴的横截 面上剪应力的分布规律BC 段内: Σm =0 M 1—M 2+Mn 2=0 得 Mn 2=—50 Nm (设反) CD 段内: Σm =0 M 1—M 2—M 3十Mn 3=0 得 Mn 3=—30 Nm (设反) 为了清楚地看出各截面上的扭矩变化情况,以便确定危险截面,通常把扭矩随截面位置的变化绘成图形,称为扭矩图。
第5章扭转5.1 扭转的概念及外力偶矩的计算5.1.1、扭转的概念在工程实际中,有很多以扭转变形为主的杆件。
例如图示 5.1,常用的螺丝刀拧螺钉。
图5.1图示5.2,用手电钻钻孔,螺丝刀杆和钻头都是受扭的杆件。
图5.2图示5.3,载重汽车的传动轴。
图5.3图示5.4,挖掘机的传动轴。
图5.4图5.5所示,雨蓬由雨蓬梁和雨蓬板组成(图5.5a),雨蓬梁每米的长度上承受由雨蓬板传来均布力矩,根据平衡条件,雨蓬梁嵌固的两端必然产生大小相等、方向相反的反力矩(图5.5b),雨蓬梁处于受扭状态。
图5.5分析以上受扭杆件的特点,作用于垂直杆轴平面内的力偶使杆引起的变形,称扭转变形。
变形后杆件各横截面之间绕杆轴线相对转动了一个角度,称为扭转角,用 表示,如图5.6所示。
以扭转变形为主要变形的直杆称为轴。
图5.6本章着重讨论圆截面杆的扭转应力和变形计算。
5.1.2、外力偶矩的计算工程中常用的传动轴(图)是通过转动传递动力的构件,其外力偶矩一般不是直接给出的,通常已知轴所传递的功率和轴的转速。
根据理论力学中的公式,可导出外力偶矩、功率和转速之间的关系为:nN m 9550= (5.1) 式中 m----作用在轴上的外力偶矩,单位为m N ⋅;N-----轴传递的功率,单位为kW ;n------轴的转速,单位为r/min 。
图5.75.2 圆轴扭转时横截面上的内力及扭矩图5.2.1 扭矩已知受扭圆轴外力偶矩,可以利用截面法求任意横截面的内力。
图 5.8a 为受扭圆轴,设外力偶矩为e M ,求距A 端为x 的任意截面n m -上的内力。
假设在n m -截面将圆轴截开,取左部分为研究对象(图5.8b ),由平衡条件0=∑x M ,得内力偶矩T 和外力偶矩e M 的关系内力偶矩T 称为扭矩。
扭矩的正负号规定为:自截面的外法线向截面看,逆时针转向为正,顺时针转向为负。
图5.8图示5.8的b 和c ,从同一截面截出的扭矩均为正号。
第八章 圆轴的扭转工程构件一般可分为三类。
第四章已指出:杆是某一方向尺寸远大于其它二方向尺寸的构件,若杆件的轴线为直线,则称为直杆。
此外,若构件在某一方向的尺寸远小于其它二方向的尺寸,称之为板。
若构件在x 、y 、z 三个方向的尺寸具有相同的数量级,则称为块体。
本课程主要讨论直杆,这是一种最简单的构件。
如同4.4节所述,在空间任意力系的作用下,杆件截面内力的最一般情况是六个分量都不为零,其变形是很复杂的。
为了简化讨论,我们将杆的基本变形分成为三类,即拉压、扭转、弯曲,如图4.3所示。
前面已经讨论了在轴向载荷作用下杆的拉伸和压缩;现在再来研究杆的另一类基本变形,即扭转问题。
§8.1扭转的概念和实例工程中承受扭转的构件是很常见的。
如图8.1所示的汽车转向轴,驾驶员操纵方向盘将力偶作用于转向轴AB 的上端,转向轴的下端B 则受到来自转向器的阻抗力偶的作用,使转向轴AB 发生扭转。
又如图8.2中的传动轴,轮C 上作用着主动力偶矩,使轴转动;轮D 输出功率,受到阻力偶矩的作用,轴CD 也将发生扭转。
以上二例都是承受扭转的构件实例。
由于工程中承受扭转的构件大多为圆截面直杆,故称之为轴。
本章亦仅限于讨论直圆轴的扭转问题。
图8.2 传动轴图8.3所示为等截面直圆轴扭转问题的示意图。
扭转问题的受力特点是:在各垂直于轴线的平面内承受力偶作用。
如在图8.3中,圆轴AB 段两端垂直于轴线的平面内,各作用有一个外力偶M 0,此二力偶的力偶矩相等而转向相反,故是满足平衡方程的。
圆轴扭转问题的变形特点是:在上述外力偶系的作用下,圆轴各横截面将绕其轴线发生相对转动;任意两横截面间相对转过的角度,称为相对扭转角,以φ表示。
图8.3中,φAB 表示截面B 相对于截面A 的扭转角。
必须指出,工程中的传动轴,除受扭转作用外,往往还伴随有弯曲、拉伸(压缩)等其它形式的变形。
这类问题属于组合变形,将在以后研究。
§8.2 扭矩与扭矩图已知轴所传递的功率、转速,可利用6.3节提供的“功率、转速与传递的扭矩之关系”来计算作用于传动轴上的外力偶矩M 0。