圆轴扭转时的应力(材料力学)
- 格式:ppt
- 大小:527.50 KB
- 文档页数:10
圆轴扭转时的强度条件
圆轴扭转时的强度条件可以通过研究轴材料的变形和破坏来确定。
以下是圆轴扭转时的强度条件:
1. 扭转强度:圆轴在扭转时会受到扭矩的作用,扭矩会产生剪应力。
扭转强度是指材料在扭转作用下能够承受的最大剪应力。
扭转强度与材料弹性模量、截面形状和尺寸有关。
2. 疲劳强度:圆轴在长时间的扭转作用下可能会发生疲劳破坏。
疲劳强度是指材料在循环载荷作用下能够承受的最大应力范围,它与材料的疲劳寿命有关。
3. 断裂强度:圆轴在扭转超过其承受能力时可能会发生断裂破坏。
断裂强度是指材料在正常使用条件下能够承受的最大应力,它与材料的断裂特性有关。
为了满足圆轴的强度条件,一般采取以下措施:
1. 选择合适的轴材料,保证其扭转强度和断裂强度满足工程要求。
2. 根据应力分布的特点,设计合理的截面形状和尺寸,以提高扭转强度和疲劳强度。
3. 对于长期扭转作用下的轴,可以采取热处理等工艺措施来提高其强度和耐疲劳性能。
需要注意的是,圆轴的强度条件与其几何形状、材料特性、工作条件等因素密切相关,因此在具体设计时需要进行详细的力学计算和强度分析。
130一、讨论圆轴扭转时的应力状态,并分析铸铁试件受扭时的破坏现象。
解 根据第十九章讨论,圆轴扭转时,在横截面的边缘处剪应力最大,其数值为:n n W M=τ (e )在圆轴的最外层,按图22-5(a ),所示方式取出单元体ABCD ,单元体各面上的应力如图22-5(b )所示。
在这种情况下,ττσσ===xy y x ,0 (f )单元体侧面上只有剪应力作用,而无正应力作用的这种应力状态称为纯剪切应力状态。
把(f )式代入公式(22-6)得:min maxσσ ττσσσσ±=+-±+=22)2(2xy y x y x 由公式(22-5):yx xytg σστα--=220 →∞-所以 2709020--=或α450-=α 或 1350-=α以上结果表明,从x 轴量起,由 450-=α(顺时针方向)所确定的主平面上的主应力为max σ;而由 1350-=α所确定的主平面上的主应力为min σ。
按照主应力的记号规定:τσσστσσ-=====min 32max 10所以,纯剪切是二向应力状态,两个主应力的绝对值相等,都等于剪应力τ,但一个为拉应力,一个为压应力。
圆截面铸铁试件扭转时,表面各点max σ所在的主平面联成倾角为︒45的螺旋面[图22-5(a )]。
由于铸铁抗拉强度较低,试件将沿这一螺旋面因拉伸而发生断裂破坏,如(a )(c ) 图22-5131图22-5(c )所示。
二、 图22-6(a )所示为一横力弯曲下的梁,求得截面m -n 上的弯矩M 及剪力Q 后,算出截面上一点A 处弯曲正应力和剪应力分别为:MPa MPa 50,70=-=τσ[图22-6(b )]试确定A 点处的主应力及主平面的方位,并讨论同一横截面上其它点处的应力状态。
解 把从A 点处截取的单元体放大如图22-6(c )所示。
选定x 轴的方向垂直向上,则0=x σ MPa y 70-=σ MPa xy 50-=τ由公式(22-5)得: 429.1)70(0)50(2220=----=--=yx xytg σστα︒=5520α或︒235 ︒=5.270α或︒5.117从x 轴量起,按逆时针方向量取的角度︒5.27,确定max σ所在主平面,以同一方向量取的角度,5.117︒确定min σ所在的另一主平面。
第3章扭转教学目的:理解圆轴扭转的受力和变形特点,剪应力互等定理;掌握圆轴受扭时的内力、应力、变形的计算;熟练掌握圆轴受扭时的强度、刚度计算。
教学重点:外力偶矩的计算、扭矩图的画法;纯剪切的切应力;圆杆扭转时应力和变形;扭转的应变能。
教学难点:圆杆扭转时截面上切应力的分布规律;切应力互等定理,横截面上切应力公式的推导,扭转变形与剪切变形的区别;掌握扭转时的强度条件和刚度条件,能熟练运用强度和刚度计算。
教具:多媒体。
通过工程实例建立扭转概念,利用幻灯片演示和实物演示表示扭转时的变形。
教学方法:采用启发式教学,通过提问,引导学生思考,让学生回答问题。
通过例题、练习和作业熟练掌握强度和刚度计算。
本章中给出了具体情形下具体量的计算公式,记住并会使用这些公式,强调单位的统一,要求学生在学习和作业中体会。
教学内容:扭转的概念;扭转杆件的内力(扭矩)计算和画扭矩图;切应力互等定理及其应用,剪切胡克定律与剪切弹性模量;扭转时的切应力和变形,圆杆扭转时截面上切应力的分布规律;扭转杆件横截面上的切应力计算方法和扭转强度计算方法;扭转杆件变形(扭转角)计算方法和扭转刚度计算方法。
教学学时:6学时。
教学提纲:3.1 扭转的概念和实例工程实际中,有很多构件,如车床的光杆、搅拌机轴、汽车传动轴等,都是受扭构件。
还有一些轴类零件,如电动机主轴、水轮机主轴、机床传动轴等,除扭转变形外还有弯曲变形,属于组合变形。
例如,汽车方向盘下的转向轴,攻螺纹用丝锥的锥杆(图3-1)等,其受力特点是:在杆件两端作用大小相等、方向相反、且作用面垂直于杆件轴线的力偶。
在这样一对力偶的作用下,杆件的变形特点是:杆件的任意两个横截面围绕其轴线作相对转动,杆件的这种变形形式称为扭转。
扭转时杆件两个横截面相对转动的角度,称为扭转角,一般用φ表示(图3-2)。
以扭转变形为主的杆件通常称为轴。
截面形状为圆形的轴称为圆轴,圆轴在工程上是常见的一种受扭转的杆件。
第3章 扭转1、扭转的概念:杆件的两端个作用一个力偶,其力偶矩大小相等、转向相反且作用平面垂直于杆件轴线,致使杆件的任意两个横截面都发生绕轴线的相对转动,即为扭转变形。
2、外力偶矩的计算{}{}{}min /95491000602r KW m N e e n P M P M n=⇒⨯=⨯⨯⋅π 式中,e M 为外力偶矩。
又由截面法:e e M T M T =⇒=-0 T 称为n n -截面上的扭矩。
规定:若按右手螺旋法则把T 表示为矢量,当矢量方向与研究部分中截面的外法线的方向一致时,T 为正;反之为负。
3、纯剪切(1)薄壁圆筒扭转时的切应力 δπττδπ222r M r r M ee =⇒••=(2)切应力互等定理:在单元体相互垂直的两个平面上,切应力必然成对存在,且数值相等;两者都垂直于平面的交线,方向则共同指向或背离这一交线。
(3)切应变 剪切胡克定律:当切应力不超过材料的剪切比例极限时,切应变γ与切应力τ成正比。
γτG = G 为比例常数,称为材料的切变模量。
弹性模量E 、泊松比μ和切变模量G 存在关系:)1(2μ+=EG 4、圆轴扭转时的应力(1)变形几何关系:距圆心为ρ处的切应变为dxd ϕργρ=(2)物理关系:ρτ为横截面上距圆心为ρ处的切应力。
dxd G G ϕρτγτρρρ=⇒= (3)静力关系:内力系对圆心的力矩就是横截面的扭矩:dA d d GdA T AxA⎰⎰==2ρρτϕρ 以p I 表示上式右端的积分式:dA I Ap ⎰=2ρ p I 称为横截面对圆心O 点的极惯性矩(截面二次极矩)横截面上距圆心为ρ的任意点的切应力:pI T ρτρ=ρ最大时为R ,得最大切应力:pI TR =max τ引用记号RI W p t =t W 称为抗扭截面系数。
则tW T =max τp I 和t W 的计算(1)实心轴:3224420032D R d d dA I RAp ππθρρρπ====⎰⎰⎰16233D R RI W p t ππ===(2)空心轴:)1(32)(324444202/2/32αππθρρρπ-=-===⎰⎰⎰D d D d d dA I D d Ap)1(16)(164344αππ-=-==D d D DRI W p t5、圆轴扭转时的变形pGI Tl =ϕ ϕ为扭转角,l 为两横截面间的距离。