第四章 微分方程模型
- 格式:ppt
- 大小:2.19 MB
- 文档页数:12
微分方程模型介绍在研究实际问题时,常常会联系到某些变量的变化率或导数,这样所得到变量之间的关系式就是微分方模型。
微分方程模型反映的是变量之间的间接关系,因此,要得到直接关系,就得求微分方程。
求解微分方程有三种方法:1)求解析解;2)求数值解(近似解);3)定性理论方法。
建立微分方程模型的方法:1)利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律等来建立微分方程模型。
2)微元分析法利用已知的定理与规律寻找微元之间的关系式,与第一种方法不同的是对微元而不是直接对函数及其导数应用规律3)模拟近似法在生物、经济等学科的实际问题中,许多现象的规律性不很清楚,即使有所了解也是极其复杂的,建模时在不同的假设下去模拟实际的现象,建立能近似反映问题的微分方程,然后从数学上求解或分析所建方程及其解的性质,再去同实际情况对比,检验此模型能否刻画、模拟某些实际现象。
下面我们以生态学模型为例介绍微分方程模型的建立过程: 一. 单种群模型1. 马尔萨斯(Malthus)模型假定只有一个种群,()N t 表示t 时刻生物总数,r 表示出生率,0t 表示初始时刻,则生物总数增长的数学模型为()()()00d ,d (1)t t N t rN t t N t N =⎧=⎪⎨⎪=⎩不难得到其解为()0()0r t t N t N e-=.2. 密度制约模型由马尔萨斯模型知,种群总数将以几何级数增长,显然与实际不符,因为种群密度增大时,由于食物有限,生物将产生竞争,或因为传染病不再按照增长率r 增长,因而有必要修改,在(1)式右端增加一项竞争项。
()()()d (1)(2)d N t N t rN t tK=-其中K 为最大容纳量,可以看出当()N t K =时,种群的规模不再增大。
这个模型就是著名的Logistic 模型,可以给出如下解释:由于资源最多仅能维持K 个个体,故每个个体平均需要的资源为总资源的1K,在t 时刻个体共消耗了总资源的()N t K此时资源剩余()1N t K-,因此Logistic 模型表明:种群规模的相对增长率与当时所剩余的资源份量成正比,这种种群密度对种群规模增长的抑制作用。
第四章 微分方程模型在研究某些实际问题时,经常无法得到各变量之间的联系,问题的特性往往会给出关于变化率之间的一些关系。
利用这些关系,我们可以建立相应的微分方程模型。
事实上,在微分方程课程中,解所谓应用题时已经遇到简单的建立微分方程模型问题,这些问题大多数是物理或几何方面的典型问题,假设条件已经给出,只须用数学符号将已知规律表达出来,即可列出方程,求解的结果就是问题的答案,答案唯一的。
而本章介绍的模型主要是非物理领域的实际问题,要分析具体情况或进行类比才能给出假设条件,作出不同的假设,就得到不同的方程。
问题没有标准答案,求解结果还要用来解释实际现象并接受检验。
第一节 人口模型问题:据考古学家论证,地球上出现生命距今已有20亿年,而人类的出现距今不足200万年。
纵观人类人口总数的增长情况,我们发现:1000年前人口总数为2.75亿,经过漫长的过程到1830年,人口总数为10亿。
又经过100年即1930年,人口总数达20亿。
30年之后,在1960年,人口总数为30亿,又经过15年,1975年的人口总数为40亿,12年之后即1987年,人口总数为50亿。
问:人类人口增长的规律是什么?如何在数学上描述这个规律。
⑴ Multhus 模型:18世纪末,英国神父Multhus 在研究了一百多年的人口统计资料之后,认为在人口自然增长过程中,净相对增长率(出生率-死亡率)为常数,于是提出了著名的Multhus 人口模型。
模型假设:①设)(t x 表示t 时刻的人口数,且)(t x 连续、可微; ②人口增长率r 是常数;③人口数量的变化是封闭的,即人口数量的增长与减少取决于人口中个体的生育和死亡,且每一个体都具有同样的生育能力和死亡率。
模型建立与求解:由假设在时间],[t t t ∆+内人口的增量为t t rx t x t t x ∆=-∆+)()()(,于是有方程⎪⎩⎪⎨⎧==0)0(x x rx dt dx ,求解得rt e x t x 0)(=,即人口增长是按指数规律增长,其图形为模型评价:考虑二百多年来人口增长的实际情况,1961年世界人口总数为3.06⨯109,在1961~1970年这段时间内。
第四章微分方程模型一、微分方程模型的建立在实际问题中经常需要寻求某个变量y 随另一变量t 的变化规律:y=y(t),然而常常不能直接求出。
有时容易建立包含变量及导数在内的关系式,即建立变量能满足的微分方程。
通过求解微分方程对所研究的问题进行解释说明。
因此,微分方程建模是数学建模的重要方法,微分方程模型应用也十分广泛。
建立微分方程模型时,经常会遇到一些关键词,比如“速率”、“增长”“衰变”,“边际”等,常涉及到导数,再结合问题所涉及的基本规律就可以得到相应的微分方程。
常用微分方程建立数学模型的方法有:(1)按规律直接列方程例1一个较热的物体置于室温为1800c 的房间内,该物体最初的温度是6000c ,3分钟以后降到5000c .想知道它的温度降到3000c 需要多少时间?10分钟以后它的温度是多少?模型建立:根据牛顿冷却(加热)定律:将温度为T 的物体放入处于常温m 的介质中时,T 的变化速率正比于T 与周围介质的温度差。
设物体在冷却过程中的温度为T (t ),t ≥0,T 的变化速率正比于T 与周围介质的温度差,成正比与即m T dtdT−。
建立微分方程⎪⎩⎪⎨⎧=−−=.60)0(),(T m T k dt dT(4.1)其中参数k >0,m =18.求得一般解为ln(T -m )=-k t+c ,或,0,≥+=−t ce m T kt代入条件,求得c=42,k=-2116ln 31,最后得().0,42182116ln 31≥+=t et T t (4.2)结果:(1)该物体温度降至3000c 需要8.17分钟。
(2)10分钟以后它的温度是()102116ln 31421810e T +==25.870c(2)微元分析法该方法的基本思想是通过分析研究对象的有关变量在一个很短时间内的变化情况,寻求一些微元之间的关系式。
例2一个高为2米的球体容器里盛了一半的水,水从它的底部小孔流出,小孔的横截面积为1平方厘米.试求放空容器所需要的时间.2米模型建立:首先对孔口的流速做两条假设:(1)t 时刻的流速v 依赖于此刻容器内水的高度h (t )。
第四章微分方程模型当我们描述实际对象的某些特性随时间(或空间)而演变的过程、分析它的变化规律、预测它的未来性态,研究它的控制手段时,通常要建立对象的动态模型。
建模时首先要根据建模目的和对问题的具体分析作出简化假设,然后按照对象内在的或可以类比的其他对象的规律列出微分方程,求出方程的解并将结果翻译回实际对象,就可以进行描述、分析、预测或控制了。
事实上在微分方程课程中,我们已经遇到简单的建立动态模型问题,例如“一质量为m的物体自高h处自由落下,初速是零,设阻力与下落速度的平方成正比,比例系数为k,求下落速度随时间的变化规律。
”又如“容器内有盐水100L,内含盐10kg,今以3 L/min 的速度从一管放进净水,以2 L/min的速度从另一管抽出盐水,设容器内盐水浓度始终是均匀的,求容器内含盐量随时间变化的规律。
”这些问题大多是物理或几何方面的典型问题,假设条件已经给出,只须用数学符号将已知规律表示出来,即可列出方程,求解的结果就是问题的答案,答案是唯一的,已经确定的。
而本章要讨论的模型主要是非物理领域的实际问题,要分析具体情况或进行类比才能给出假设条件。
作出不同的假设,就得到不同的方程,所以事先是没有答案的。
求解结果还要用来解释实际现象并接受检验。
人口增长模型人类社会进入20世纪以来,在科学技术和生产力飞速发展的同时,世界人口也以空前的规模增长。
统计数据显示:年1625 1830 1930 1960 1974 19871999人口(亿)5 10 20 30 40 50 60可以看出,世界人口每增加十亿的时间,由一百年缩短为十二三年。
长期以来,人类的繁殖一直在自发地进行着。
只是由于人口数量的迅速膨胀和环境质量的急剧恶化,人们才猛然醒悟,开始研究人类和自然的关系、人口数量的变化规律,以及如何进行人口控制等。
认识人口数量的变化规律,建立人口模型,作出较准确的预报,是有效控制人口增长的前提。
用微分方程来研究人口增长规律,基本上采用的是模拟近似的方法。
第四章 微分方程与差分方程方法第一节 微分方程模型我们在数学分析中所研究地函数,是反映客观现实世界运动过程中量与量之间地一种关系,但我们在构造数学模型时,遇到地大量实际问题往往不能直接写出量与量之间地关系,却能比较容易地建立这些变量和它们地导数(或微分>间地关系式,这种联系着自变量、未知函数及其导数(或微分>地关系式称为微分方程.§4.1.1微分方程简介这一节,我们将介绍关于微分方程地一些基本概念. 一、微分方程地阶数首先我们具体地来看一个微分方程地例子.例4-1 物体冷却过程地数学模型将某物体放置于空气中,在时刻0=t ,测量得它地温度为C u 00150=,10分钟后测量得温度为C u 01100=.我们要求决定此物体地温度u 和时间t 地关系,并计算20分钟后物体地温度.这里我们假定空气地温度保持为C u 024=α.解:根据物理学中地牛顿冷却定律可知,热量总是从温度高地物体向温度低地物体传导。
一个物体地温度变化速度与这一物体地温度与其所在介质温度地差值成正比.设物体在时刻t 地温度为)(t u u =,则温度地变化速度可以用dtdu来表示.我们得到描述物体温度变化地微分方程)(αu u k dtdu--=(4.1.1> 其中0>k 是比例常数.方程(4.1.1>中含有未知函数u 及它地一阶导数dtdu,这样地方程,我们称为一阶微分方程.微分方程中出现地未知函数最高阶导数地阶数称为微分方程地阶数.方程)(33t f cy dt dyb dty d =++(4.1.2> 中未知函数最高阶导数地阶数是三阶,则方程(4.1.2>称为三阶微分方程. 二、常微分方程与偏微分方程如果在微分方程中,自变量地个数只有一个,我们称这种微分方程为常微分方程。
自变量地个数为两个或两个以上地微分方程称为偏微分方程.方程0222222=∂∂+∂∂+∂∂zTy T x T (4.1.3> 就是偏微分方程地例子,其中T 是未知函数,x 、y 、z 都是自变量.而方程(4.1.1>(4.1.2>都是常微分方程地例子.三、线性与非线性微分方程如果n 阶常微分方程0),,,,(=n n dxyd dx dy y x F (4.1.4>地左端为关于未知函数y 及其各阶导数地线性组合,则称该方程为线性微分方程,否则称为非线性方程.一般地n 阶线性微分方程具有形式)()()()(1111x f y x a dx dyx a dx y d x a dx y d n n n n n n =++++--- (4.1.5> 其中)1( )(),(n i x f x a i =是关于x 地已知函数.当()0f x =时,称(4.1.5>为n 阶齐次线性微分方程。