第五章微分方程模型64786
- 格式:ppt
- 大小:1.91 MB
- 文档页数:68
第5章 微分方程模型5.1 某人每天由饮食获取10467焦热量,其中5038焦用于新陈代谢,此外每公斤体重需支付69焦热量作为运动消耗,其余热量则转化为脂肪,已知以脂肪形式贮存的热量利用率为100%,每公斤脂肪含热量41868焦,问此人的体重如何随时间而变化?5.2 生活在阿拉斯加海滨的鲑鱼服从Malthus 增长模型)(003.0)(t p dtt dp = 其中t 以分钟计。
在0=t 时一群鲨鱼来到此水域定居,开始捕食鲑鱼。
鲨鱼捕杀鲑鱼的速率是)(001.02t p ,其中)(t p 是t 时刻鲑鱼总数。
此外,由于在它们周围出现意外情况,平均每分钟有0.002条鲑鱼离开此水域。
(1)考虑到两种因素,试修正Malthus 模型。
(2)假设在0=t 是存在100万条鲑鱼,试求鲑鱼总数)(t p ,并问∞→t 时会发生什么情况?5.3 根据罗瑟福的放射性衰变定律,放射性物质衰变的速度与现存的放射性物质的原子数成正比,比例系数成为衰变系数,试建立放射性物质衰变的数学模型。
若已知某放射性物质经时间21T 放射物质的原子下降至原来的一半(21T 称为该物质的半衰期)试决定其衰变系数。
5.4 用具有放射性的14C 测量古生物年代的原理是:宇宙线轰击大气层产生中子,中子与氮结合产生14C 。
植物吸收二氧化碳时吸收了14C ,动物食用植物从植物中得到14C 。
在活组织中14C 的吸收速率恰好与14C 的衰变速率平衡。
但一旦动植物死亡,它就停止吸收14C ,于是14C 的浓度随衰变而降低。
由于宇宙线轰击大气层的速度可视为常数,既动物刚死亡时14C 的衰变速率与现在取的活组织样本(刚死亡)的衰变速率是相同的。
若测得古生物标本现在14C 的衰变速率,由于14C 的衰变系数已知,即可决定古生物的死亡时间。
试建立用14C 测古生物年代的模型(14C 的半衰期为5568年)。
5.5 试用上题建立的数学模型,确定下述古迹的年代:(1)1950年从法国Lascaux 古洞中取出的碳测得放射性计数率为0.97计数(min ⋅g ),而活树木样本测得的计数为6.68计数(min ⋅g ),试确定该洞中绘画的年代;(2)1950年从某古巴比伦城市的屋梁中取得碳标本测得计数率为4.09计数(min ⋅g ),活数标本为6.68计数(min ⋅g ),试估计该建筑的年代。
在解决实际问题时,弄清问题中的变量之间的函数关系或其变化趋势是至关重要的,而在一些较为复杂的变化过程中,变量之间的函数关系无法直接得到。
但是,在许多情况下,我们往往可以在理论或经验的基础上找到问题中的一些变量及其导数之间的关系。
也就是找出一个或几个含有未知函数及其导数所满足的方程,这个(些)方程就称为微分方程(组)。
然后通过求解微分方程(组)得到变量之间的函数关系,或者在微分方程(组)的基础上进行数值计算和渐进性态研究,从而了解整个系统的发展变化规律。
为了研究一些实际问题的变化规律,往往需要对所研究的问题进行适当的简化和假设,再建立数学模型,当问题中涉及变量的变化率时,就可以通过微分方程来建模。
微分方程模型主要是解决与导数,也即变化率相关的问题,但是;实际问题中一般并不会直接出现“导数”或“变化率”等词语,这时,就需要我们仔细分析,从中找出这些信息,一般来说,如果问题中涉及到“速率”、“增长”、“改变”、“变化”、“增加”、“减少”、“衰变”(在放射性问题中)、“扩散”、“边际的”(在经济学中)等问题时,往往就可以用微分方程(组)来建模。
微分方程模型的类型很多,在解决实际问题时,要根据具体情况选择不同的模型,建立模型时,应首先将实际问题概念化为文字方程,许多问题都遵循下面的模式:总讯宗勋净变化率=净增加率━净减少率如果变量之间的关系可以用这种形式来描述,我们就不难给出相应的微分方程(组)了。
在建立了微分方程模型之后,我们当然希望能得到微分方程的解,但是,对于大多数微分方程而言,要想直接求解往往是困难的,甚至是不可能的,此时我们可以通过对方程的定性分析得到有关的一些有用信息。
§1 确定性存贮模型为了使生产和销售有条不紊地进行,一般的工商企业总需要存贮一定数量的原料或商品,然而大量的库存不但积压了资金,而且会使仓库的保管费用增加。
因此,寻求合理的库存量乃是现代企业管理的一个重要课题。
需要注意的是,存贮问题的原型可以是真正的仓库存货,水库存水,也可以是计算机的存贮器的设计问题,甚至是大脑的存贮问题。