19227-数学建模-5微分方程模型
- 格式:ppt
- 大小:2.58 MB
- 文档页数:63
微分方程与数学建模微分方程是研究函数的变化规律以及函数与其导数之间的关系的数学工具。
它在数学领域中具有广泛的应用,尤其在数学建模中发挥着重要的作用。
本文将介绍微分方程在数学建模中的应用以及解决实际问题的过程。
一、微分方程在数学建模中的应用微分方程是数学建模的重要工具之一,它能够描述变化的量与其变化率之间的关系。
在实际问题中,很多情况下我们需要确定某个物理量随时间的变化规律,而微分方程正是可以用来解决这类问题的数学工具。
数学建模是将实际问题抽象为数学模型,并利用数学方法进行求解和分析的过程。
在数学建模中,常常需要通过建立微分方程来描述问题的动力学行为。
例如,一个机械摆的摆动规律可以用二阶线性微分方程来描述;生物学中的人口变化可以用常微分方程来描述;在物理学中,众多的物理规律也可以转化为微分方程。
二、解决实际问题的过程数学建模是一个系统工程,它通常包括问题的提出、问题的分析、建立数学模型、求解模型、验证和应用等步骤。
其中,微分方程的建立和求解是数学建模中的关键环节。
在问题的提出和分析阶段,需要明确问题背景、目标和限制条件,并对问题进行全面的分析。
在确定采用微分方程进行建模时,需要对问题进行适当的简化和假设,以便将实际问题转化为可求解的数学模型。
建立微分方程模型是实现数学建模的核心步骤。
在建立模型时,需要根据问题的特点选择合适的微分方程类型,并确定方程中的参数和初值条件。
建立模型后,可以利用数学、物理和统计学等知识对模型进行分析,以了解问题的本质和特征。
对于求解微分方程模型,通常可以采用数值方法、解析方法或数学软件进行求解。
数值方法可以通过近似计算来得到问题的数值解,而解析方法则通过解析求解微分方程得到问题的解析解。
在求解过程中,需要根据具体情况选择适当的方法,并利用数学工具进行计算和分析。
验证是数学建模的重要环节,通过与实际数据进行对比验证模型的准确性和可行性。
如果模型与实际情况相符,就可以进一步进行应用和推广,为实际问题的解决提供有力支持。
第三章 微分方程模型3.1微分方程与微分方程建模法一、 微分方程知识简介我们要掌握常微分方程的一些基础知识,对一些可以求解的微分方程及其方程组,要求掌握其解法,并了解一些方程的近似解法。
微分方程的体系:(1)初等积分法(一阶方程及几类可降阶为一阶的方程)→(2)一阶线性微分方程组(常系数线性微分方程组的解法)→(3)高阶线性微分方程(高阶线性常系数微分方程解法)。
其中还包括了常微分方程的基本定理。
0. 常数变易法:常数变易法在上面的(1)(2)(3)三部分中都出现过,它是由线性齐次方程(一阶或高阶)或方程组的解经常数变易后求相应的非齐次方程或方程组的解的一种方法。
1. 初等积分法:掌握变量可分离方程、齐次方程的解法,掌握线性方程的解法,掌握全微分方程(含积分因子)的解法,会一些一阶隐式微分方程的解法(参数法),会几类可以降阶的高阶方程的解法(恰当导数方程)。
分离变量法:(1)可分离变量方程: ;0)()()()();()(=+=dy y Q x P dx y N x M y g x f dx dy(2) 齐次方程:);();(wvy ux c by ax f dx dy x y f dx dy ++++== 常数变易法:(1) 线性方程,),()(x f y x p y =+'(2) 伯努里方程,,)()(n y x f y x p y =+'积分因子法:化为全微分方程,按全微分方程求解。
对于一阶隐式微分方程,0),,(='y y x F 有 参数法:(1) 不含x 或y 的方程:;0),(,0),(='='y y F y x F(2) 可解出x 或y 的方程:);,(),,(y y f x y x f y '='=对于高阶方程,有降阶法:;0),,(;0),,,,()()1()(='''=+y y y F y y y x F n k k 恰当导数方程一阶方程的应用问题(即建模问题)。
微分方程建模一般说来,微分方程建模的方法大致可以分为以下的几个步骤:1.根据实际问题的要求确定要研究的量,包括自变量、未知函数、必要的参数等以及它们各自的变化区间;2.列方程。
可以在合理假设的前提下,利用导数表示斜率、速度、变化率的实际意义,根据一些基本定理(几何的、物理的、化学的或生物学的等等)或规律,找出未知函数的导数(或微分)与相关各量之间的等量关系式,建立微分方程并确定定解条件(注:如果没有现成的定理可供利用,也可以用微元分析法与模拟近似法列出微分方程);3.解微分方程;4.对模型的适用性作出评价,即用已知的数据检验微分方程的解是否与实际相符。
若结果与实际存在一定的差距,则还要对方程进行修正和调整,直到得出较满意的结果为止。
下面,我们就通过一些实例说明微分方程建模的具体步骤。
一.增长模型在自然界和社会的经济活动中,许多量的变化都遵循着一个基本的规律:任一单位时间内的增量都与该量自身当时的大小成正比。
运用这一基本规律,就可以建立起各种各样的增长模型。
1.马尔萨斯人口模型严格地讲,讨论人口问题所建立的模型应属于离散型模型。
但在人口基数很大的情况下,突然增加或减少的只是单一的个体或少数几个个体,相对于全体数量而言,这种改变量是极其微小的,因此,我们可以近似地假设人口随时间连续变化甚至是可微的。
这样,我们就可以采用微分方程的工具来研究这一问题。
最早研究人口问题的是英国的经济系家马尔萨斯(Malthus )(1766—1834)。
他根据百余年的人口资料,经过潜心研究,在1798年发表的《人口论》中首先提出了人口增长模型。
他的基本假设是:任一单位时刻人口的增长量与当时的人口总数成正比,且比例系数为常数。
于是,设t 时刻的人口总数为)(t y ,则单位时间内人口的增长量即为tt y t t y ∆-∆+)()( 根据基本假设,有tt y t t y ∆-∆+)()()(t y r ⋅= (r 为比例系数) 令0→∆t ,可得微分方程y r dtdy ⋅= (4.1) 这就是著名的马尔萨斯人口方程。
第十节 数学建模—微分方程的应用举例微分方程在几何、力学和物理等实际问题中具有广泛的应用,本节我们将集中讨论微分方程在实际应用中的几个实例. 读者可从中感受到应用数学建模的理论和方法解决实际问题的魅力.分布图示衰变问题★ 例1 ★ 例2 ★ 逻辑斯谛方程★ 环境污染的数学模型 ★ 例3 ★ 自由落体问题内容要点一、 衰变问题二、 逻辑斯谛方程三、 环境污染的数学模型 四、 自由落体问题例题选讲衰变问题例1(E01)镭、铀等放射性元素因不断放射出各种射线而逐渐减少其质量,这种现象称为放射性物质的衰变. 根据实验得知,衰变速度与现存物质的质量成正比,求放射性元素在时刻t 的质量.解 用x 表示该放射性物质在时刻t 的质量,则dtdx表示x 在时刻t 的衰变速度,依题意得.kx dtdx-= (1) 它就是放射性元素衰变的数学模型,其中0>k 是比例常数,称为衰变常数,因元素的不同而异.方程右端的负号表示当时间t 增加时,质量x 减少.易求出方程(1)的通解为.ktCex -=若已知当0t t =时,,0x x =代入通解kt Ce x -=中可得,00kt ex C =则可得到特解,)(00t t k e x x --=它反映了某种放射性元素衰变的规律.注:物理学中,我们称放射性物质从最初的质量到衰变为该质量自身的一半所花费的时间为半衰期,不同物质的半衰期差别极大.如铀的普通同位素)(238U 的半衰期约为50亿年;通常的镭)(226Ra 的半衰期为1600年,而镭的另一同位素Ra 230的半衰期仅为1小时.半衰期是上述放射性物质的特征,然而半衰期却不依赖于该物质的初始质量,一克Ra 226衰变成半克所需要的时间与一吨Ra 226衰变成半吨所需要的时间同样都是1600年,正是这种事实才构成了确定考古发现日期时使用的著名的碳-14测验的基础.例2 (E02) 碳14(C 14)是放射性物质,随时间而衰减,碳12是非放射性物质.活性人体因吸纳食物和空气,恰好补偿碳14衰减损失量而保持碳14和碳12含量不变,因而所含碳14与碳12之比为常数.已测知一古墓中遗体所含碳14的数量为原有碳14数量的80%,试求遗体的死亡年代.解 放射性物质的衰减速度与该物质的含量成比例,它符合指数函数的变化规律.设遗体当初死亡时C 14的含量为0p ,t 时的含量为),(t f p =于是,C 14含量的函数模型为,)(0kt e p t f p ==其中),0(0f p =k 是一常数.常数k 可以这样确定:由化学知识可知,C 14的半衰期为5730年,即C 14经过5730年后其含量衰减一半,故有,2573000k e p p = 即.215730k e =两边取自然对数,得,69315.021ln5730-≈=k 即.0001209.0-≈k 于是,C 14含量的函数模型为.)(0001209.00t e p t f p -==由题设条件可知,遗体中C 14的含量为原含量0p 的80%,故有 ,8.00001209.000t e p p -= 即.8.00001209.0te -=两边取自然对数,得,0001209.08.0ln t -= 于是 .184********.022314.00001209.08.0ln ≈--≈-=t由此可知,遗体大约已死亡1846年.二、 逻辑斯谛方程:逻辑斯谛方程是一种在许多领域有着广泛应用的数学模型, 下面我们借助树的增长来建立该模型.一棵小树刚栽下去的时候长得比较慢, 渐渐地, 小树长高了而且长得越来越快, 几年不见, 绿荫底下已经可乘凉了; 但长到某一高度后, 它的生长速度趋于稳定, 然后再慢慢降下来. 这一现象很具有普遍性. 现在我们来建立这种现象的数学模型.如果假设树的生长速度与它目前的高度成正比, 则显然不符合两头尤其是后期的生长情形, 因为树不可能越长越快; 但如果假设树的生长速度正比于最大高度与目前高度的差, 则又明显不符合中间一段的生长过程. 折衷一下, 我们假定它的生长速度既与目前的高度,又与最大高度与目前高度之差成正比.设树生长的最大高度为H (m), 在t (年)时的高度为h (t ), 则有)]()[()(t h H t kh dtt dh -= (8.2) 其中0>k 是比例常数. 这个方程为Logistic 方程. 它是可分离变量的一阶常数微分方程.下面来求解方程(8.2). 分离变量得,)(kdt h H h dh=-两边积分,)(⎰⎰=-kdt h H h dh得 ,)]ln([ln 11C kt h H h H+=-- 或,21k H t H C k H t e C e hH h==-+ 故所求通解为,11)(22kHtkHt kHt CeH e C He C t h -+=+= 其中的⎪⎪⎭⎫ ⎝⎛>==-0112HC e C C C 是正常数. 函数)(t h 的图象称为Logistic 曲线. 图8-8-1所示的是一条典型的Logistic 曲线, 由于它的形状, 一般也称为S 曲线. 可以看到, 它基本符合我们描述的树的生长情形. 另外还可以算得.)(lim H t h t =+∞→这说明树的生长有一个限制, 因此也称为限制性增长模式.注: Logistic 的中文音译名是“逻辑斯谛”. “逻辑”在字典中的解释是“客观事物发展的规律性”, 因此许多现象本质上都符合这种S 规律. 除了生物种群的繁殖外, 还有信息的传播、新技术的推广、传染病的扩散以及某些商品的销售等. 例如流感的传染、在任其自然发展(例如初期未引起人们注意)的阶段, 可以设想它的速度既正比于得病的人数又正比于未传染到的人数. 开始时患病的人不多因而传染速度较慢; 但随着健康人与患者接触, 受传染的人越来越多, 传染的速度也越来越快; 最后, 传染速度自然而然地渐渐降低, 因为已经没有多少人可被传染了.下面举两个例子说明逻辑斯谛的应用.人口阻滞增长模型 1837年, 荷兰生物学家V erhulst 提出一个人口模型00)(),(y t y by k y dtdy=-= (8.3)其中b k ,的称为生命系数.我们不详细讨论这个模型, 只提应用它预测世界人口数的两个有趣的结果.有生态学家估计k 的自然值是0.029. 利用本世纪60年代世界人口年平均增长率为2%以及1965年人口总数33.4亿这两个数据, 计算得,2=b 从而估计得:(1)世界人口总数将趋于极限107.6亿. (2)到2000年时世界人口总数为59.6亿.后一个数字很接近2000年时的实际人口数, 世界人口在1999年刚进入60亿. 新产品的推广模型 设有某种新产品要推向市场, t 时刻的销量为),(t x 由于产品性能良好, 每个产品都是一个宣传品, 因此, t 时刻产品销售的增长率,dtdx与)(t x 成正比, 同时, 考虑到产品销售存在一定的市场容量N , 统计表明dtdx与尚未购买该产品的潜在顾客的数量)(t x N -也成正比, 于是有)(x N kx dtdx-=(8.4)其中k 为比例系数. 分离变量积分, 可以解得kNtCeNt x -+=1)( (8.5)由,)1()1(,)1(2322222kNt kNt kNt kNt kNt Ce Ce e N Ck dt x d Ce ke CN dt dx -----+-=+= 当N t x <)(*时, 则有,0>dt dx 即销量)(t x 单调增加. 当2)(*N t x =时, ;022=dt x d 当2)(*N t x >时, ;022<dtxd 当2)(*N t x <时, 即当销量达到最大需求量N 的一半时, 产品最为畅销, 当销量不足N 一半时, 销售速度不断增大, 当销量超过一半时, 销售速度逐渐减少.国内外许多经济学家调查表明. 许多产品的销售曲线与公式(8.5)的曲线(逻辑斯谛曲线)十分接近. 根据对曲线性状的分析, 许多分析家认为, 在新产品推出的初期, 应采用小批量生产并加强广告宣传, 而在产品用户达到20%到80%期间, 产品应大批量生产; 在产品用户超过80%时, 应适时转产, 可以达到最大的经济效益.三、环境污染的数学模型随着人类文明的发展,环境污染问题已越来越成为公众所关注的焦点.我们将建立一个模型,来分析一个已受到污染的水域,在不再增加污染的情况下,需要经过多长的时间才能将其污染程度减少到一定标准之内.记()t Q Q =为体积为V 的某一湖泊在时刻t 所含的污染物的总量.假设洁净的水以不变的流速r 流入湖中,并且湖水也以同样的流速流出湖外,同时假设污染物是均匀地分布在整个湖中,并且流入湖中洁净的水立刻就与原来湖中的水相混合.注意到Q 的变化率= — 污染物的流出速度,等式右端的负号表示Q 是减少的,而在时刻t ,污染物的浓度为VQ.于是 污染物的流出速度=污水外流的速度⨯浓度=VQr ⋅.这样,得微分方程 Q Vrdt dQ -= 又设当0=t 时,()00Q Q =,解得该问题的特解为Vrte Q Q -=0.污染量Q 随时间t 的变化如下图t Q 0Q 0(污染量)Q =Q 0e -rt/V例3(E03) 若有一已受污染的湖泊,其体积为6109.4⨯m 3,洁净的水以每年3310158m⨯的流速流入湖中,污水也以同样的流速流出.问经过多长时间,可使湖中的污染物排出90%?若要排出99%,又需要多长时间?解:因为03225.0109.41015833≈⨯⨯=V r t e Q Q 03225.00-=所以,当有90%的污染物被排出时,还有10%的污染物留在湖中, 即01.0Q Q =,代入上式,得 te Q Q 03225.0001.0-=解得 ()7203225.01.0ln ≈-=t (年) 当有99%的污染物被排出时,剩余的001.0Q Q =,于是t e Q Q 03225.00001.0-=,解得()14303225.001.0ln ≈-=t (年).自由落体问题例4(E04)一个离地面很高的物体, 受地球引力的作用由静止开始落向地面. 求它落到地面时的速度和所需的时间(不计空气阻力).解 取连结地球中心与该物体的直线为y 轴,其方向铅直向上,取地球的中心为原点O (如图).设地球的半径为,R 物体的质量为,m 物体开始下落时与地球中心的距离为),(R l l >在时刻t 物体所在位置为),(t y y =于是速度为.)(dtdyt v =由万有引力定律得微分方程 ,222y kmM dt y d m -= 即 ,222y kMdt y d -=其中M 为地球的质量,k 为引力常数.因为当R y =时,g dtyd -=22 (取负号是因此时加速度的方向与y 轴的方向相反).,,22gR kM RkM g ==代入得到,2222ygR dt y d -=初始条件为 ,0l y t ==.00='=t y 先求物体到达地面时的速度.由,v dtdy=得 ,22dydvv dt dy dy dv dt dv dty d =⋅== 代入并分离变量得 dy ygR vdv 22-= .2122C y gR v += 把初始条件代入上式,得 ,221gR C -=于是⎪⎪⎭⎫⎝⎛-=l y gR v 11222 .112⎪⎪⎭⎫ ⎝⎛--=l y g R v 式中令,R y =就得到物体到达地面时得速度为.)(2lR l gR v --= 再求物体落到地面所需的时间.,112⎪⎪⎭⎫ ⎝⎛--==l y g R v dt dy,0l y t == 分离变量得 .21dy yl yg l R dt --=由条件,0l y t ==得.02=C.a r c c o s 212⎪⎪⎭⎫ ⎝⎛+-=l y l y ly g l R t 在上式中令,R y =便得到物体到达地面所需得时间为.arccos 212⎪⎪⎭⎫ ⎝⎛+-=l R l R lR g l R t。
数学建模中的微分方程理论数学建模是数学的一个重要分支,它在科学、工程、计算机等领域中都有广泛的应用。
其中,微分方程是数学建模中的重要工具之一。
微分方程的理论研究和应用,对于解决现实世界中的问题具有重要意义。
一、微分方程的定义和分类微分方程是数学模型中常见的数学表达式,它描述了变量之间的关系,以及随时间变化的规律。
微分方程的一般形式为:$$F(x,y,y',y'',\cdots,y^{(n)})=0$$其中,$x$ 是自变量,$y$ 是因变量,$y'$ 是 $y$ 对 $x$ 的一阶导数,$y''$ 是 $y$ 对 $x$ 的二阶导数,$y^{(n)}$ 是 $y$ 对$x$ 的 $n$ 阶导数。
微分方程按照阶数和类型的不同,可以分为很多种类。
例如:1. 一阶常微分方程:$$\frac{dy}{dx}=f(x,y)$$2. 二阶常微分方程:$$\frac{d^2y}{dx^2}=f(x,y,\frac{dy}{dx})$$3. 偏微分方程:$$\frac{\partial u}{\partialt}=k\frac{\partial^2u}{\partial x^2}$$二、微分方程的求解方法求解微分方程是微分方程理论中的核心问题之一。
对于不同类型的微分方程,有不同的求解方法。
以下为一些常用的方法:1. 变量分离法:$$\frac{dy}{dx}=f(x)g(y)$$2. 齐次方程法:$$\frac{dy}{dx}=\frac{f(x,y)}{g(x,y)}=\frac{\frac{\partial}{\partial x}h(x,y)}{\frac{\partial}{\partial y}h(x,y)}$$3. 一阶线性微分方程法:$$\frac{dy}{dx}+P(x)y=Q(x)$$4. 二阶常系数齐次线性微分方程法:$$y''+ay'+by=0$$5. 分离变量法:$$\frac{\partial u}{\partialt}=k\frac{\partial^2u}{\partial x^2}$$三、微分方程在数学建模中的应用微分方程在数学建模中具有广泛的应用,例如:1. 物理问题:微分方程可以用来描述物理世界中的各种问题,例如运动学、动力学、热力学、电磁学等。