坐标方法的简单应用ppt课件
- 格式:ppt
- 大小:4.90 MB
- 文档页数:16
第2节坐标方法的简单应用第一课时用坐标表示地理位置要点突破一、建立平面直角坐标系表示地理位置的过程:(1)选择一个适当的参照点为原点,确定x轴、y轴的正方向,一般以向东方向为x轴正方向,向北方向为y轴正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度,比例尺的选择必须恰当,既不为过大,也不能过小,以画出的图形的大小恰当为好;(3)在坐标平面内画出这些点,写出各个地点的名称。
注意:①要说清楚坐标系的建立方法;②根据比例尺确定单位长度。
典例剖析:例1:(2007年泸州)如图是某市市区四个旅游景点的示意图(图中每个小正方形的边长为1个单位长度),请以某景点为原点,建立平面直角坐标系(保留坐标系的痕迹),并用坐标表示下列景点的位置:①动物园_____________________②烈士陵园____________________思路探索:本题答案不唯一,可以以任意一个旅游景点为原点,一般以水平方向为x轴,竖直方向为y轴建立平面直角坐标系,如以金凤广场为原点,则动物园(1,2),烈士陵园(-2,-3)。
解析:以金凤广场为原点,水平方向为x 轴,竖直方向为y 轴建立平面直角坐标系,则动物园(1,2),烈士陵园(-2,-3)规律总结:利用平面直角坐标系可以绘制区域内一些地点分布情况的平面图。
其过程分为以下三步:(1)建立适当的直角坐标系,选择一个适当的参照点为原点,确定x 轴、y 轴的正方向;(2)在坐标轴上标出单位长度;(3)在坐标平面内描出各点,写出它们的坐标。
例2:某城市A 地和B 地之间经常有车辆来往,H 地和D 地间也经常有车辆来往.四地的坐标为:A(-3,2),D(1,1),H(-5,-3),B(-1,-4),拟建一座加油站,那么加油站建立在哪里对大家都方便,是给出具体的位置.-3234-2o-11234-3-4xy-2-1-4-515思路探索:加油站建在两条公路相交的位置对两大家都方便,因此我们可以描出这四地位置的坐标,连结AB ,HD ,求出交点坐标。
【本讲主要内容】坐标方法的简单应用举例说明坐标方法在实际中的简单应用【知识掌握】【知识点精析】1. 用坐标表示地理位置2. 用坐标表示平移3. 用坐标计算图形的面积【解题方法指导】例1. 如下图是一个网格,每个小正方形的边长是100米。
小明的家在点A处,他的爷爷家在小明家正东方1000米处。
星期六小明准备带爷爷去医院作一次体检,医院的位置在点B处。
小明沿着网格的路线去接爷爷,然后去医院。
为了节省时间,小明的同学小亮准备寻找一条捷径先去医院挂号。
问小明、小亮到达医院各走了多少米?分析:先需要在图上标出小明爷爷家的位置,然后小明沿网格去接爷爷,然后再去医院,计算出所走的路程;小亮打算直接向北,到与医院水平位置时,再向东直奔医院,计算出所走的路程。
解:将网格放在平面直角坐标系中,O作为坐标原点。
小明从A 点出发,向东行进1000米,到达C 点(爷爷家);然后接了爷爷向北行进800米,到达D 点;再向左行进100米到达医院,他一共走了19001008001000=++(米)。
小亮从点A 出发,向北行进了800米,再向东行进了900米到达医院,他一共走了1700900800=+(米)。
评析:在解决这个问题时,首先要建立直角坐标系,然后确定几个点的位置(小明家A ,爷爷家C ,医院B ;同时要注意直角拐点D 、E 的位置);还要注意小明和小亮是沿着网格行走的,只能沿水平方向或竖直方向,不能沿斜的方向走;最后计算每人行进的路程。
例2. 如下图,在直角坐标系中,线段AB 在第二象限,A 点的坐标是(3,2-),B 点的坐标是(1,4-)。
请你完成以下操作:(1)将A 、B 两点分别沿水平方向向右平移6个单位,分别到达A 1,B 1位置; (2)将A 1,B 1两点分别向下平移5个单位,分别到达A 2,B 2位置; (3)将A 2,B 2两点分别向左平移6个单位,分别到达A 3,B 3位置。
观察图形,线段A 3B 3和线段AB 的位置有什么关系?线段A 3B 3怎样平移,可以到达AB 的位置?分析:将A 、B 两点向右平移6个单位,实际上是将线段AB 平移到线段A 1B 1的位置; 将A 1,B 1两点向下平移5个单位,实际上是将线段A 1B 1平移到线段A 2B 2的位置; 将A 2,B 2两点向左平移6个单位,实际上是将线段A 2B 2平移到线段A 3B 3的位置; 不难看出,线段A 3B 3∥AB ;只要将A 3B 3向上平移5个单位,便可到达线段AB 的位置。
专题八 坐标方法的简单应用要点归纳1.利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:(1)建立坐标系,选择一个适当的 为原点,确定x 轴,y 轴的 ; (2)根据具体问题确定 ;(3)在平面内画出这些点,写出各点的 和各个地点的 . 2.一般地,在平面直角坐标系中,将点(x ,y )向右或向左平移a 个单位,可以得到对应点 或 ;将点(x ,y )向上或向下平移b 个单位长度,可以得到对应点 或 .3.一般地,在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a ,相应的新图形就是把原图形 平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a ,相应的新图形就是把原图形 平移a 个单位长度. 典例讲解:一、用坐标表示位置:表示地理位置的方法有多种,主要有“方位角+距离”确定法,平面直角坐标系法,经纬度法等. 因为平面直角坐标系是最简单、最常用的坐标系,表示地理位置直观、方便.【例1】如图1是一个动物园浏览示意图,试设计确定这个动物园中每个景点位置的一种方法,并画图说明.思路点拨:根据已知条件,建立适当的直角坐标系表示地理位置.答案不唯一,可以以任何一个景点为原点,以水平方向为x 轴,竖直方向为y 轴建立直角坐标系.若以景点的相对中心位置南门为原点,则两栖动物(4,1),飞禽(3,4),狮子园(-4,5),马园(-3,-3). 解:答案不唯一,若以南门为原点,各点坐标如上述.如图2所示. 方法规律:(1)建立直角坐标系的关键在于确定原点.一般来说,要选择明显的或大家熟悉的地点为原点,这样才能清楚地表明其他地点的位置;(2)直角坐标系描点时,找准横坐标、纵坐标.为防止发生错误,描点时按“先横后纵”顺序;(3)借助直角坐标系中数对研究图形问题,是数形结合思想的运用.数形结合,把几何问题代数化,抽象问题具体化,直观易懂.图2图1二、用坐标平移【例2】把(0,-2)向右平移3个单位长度,在向下平移1个单位长度所到达位置的坐标是( )A.(-3,2)B.(3,-2)C.(3,-3)D.(0,-3) 思路点拨:根据“横坐标,右移加,左移减;纵坐标,上移加,下移减”确定点的位置,点(0,2)133,23,3−−−−−−−−→−−−−−−−−→右移下移个单位长度个单位长度点()点()解:C方法规律:点的平移,左右移,纵坐标不变;上下移,横坐标不变. 【例3】如图,三角形A 1B 1C 1是由三角形ABC 经过平移得到的. (1)请你写出平移的过程;(2)如果点N (a ,b ),求点M 的坐标.思路点拨:图形的平移,往往是抓住一组对应点进行突破,通过对应点进行突破,通过对应点坐标变化,发现平移规律,对于多次平移,可分解左右平移和上下平移,并且其结果不受沿某轴平移先后顺序的影响. 解:(1)方法一:选点A 移到点A 1,则A (-5,-2)→A ‘(-5,1)→A 1(1,1)由此可知,△A 1B 1C 1是由△ABC 先向上平移3个单位长度,再向右平移6个单位长度得到的. 方法二:A (-5,-2)→→A ‘(1,2)→A 1(1,1).由此可知,△A 1B 1C 1是由△ABC 先向右平移6个单位长度,再向上平移3个单位长度得到的. (2)如果点N (a ,b ),则点M 坐标为(a -6,b -3).拓展探究一、用坐标表示对称:坐标,不仅可以表示平移,而且可以表示轴对称,中心对称.(1)点P (m ,n )关于x 轴的对称点P 1(m ,-n ),即横坐标不变,纵坐标互为相反数; (2)点P (m ,n )关于x 轴的对称点P 2(-m ,n ),即纵坐标不变,横坐标互为相反数; (3)点P (m ,n )关于x 轴的对称点P 3(-m ,-n ),即横纵坐标都互为相反数.【例1】在平面直角坐标系中,直线l 过点M (3,0),且平行于y 轴. (1)如果△ABC 三个顶点的坐标分别是A (-2,0),B (-1,0),C (-1,2),△ABC 关于y 轴的对称图形是△A 1B 1C 1,△A 1B 1C 1关于直线l 的对称图形是△A 2B 2C 2,写出△A 2B 2C 2的三个顶点坐标; (2)如果点P 的坐标是(-a ,0),其中a >0,点P 关于y 轴的对称点是P 1,P 1关于直线l 的对称点是P 2,求PP 2的长.思路点拨:关于y 轴,直线l 对称,通过画图利用对称的性质求坐标和线段的长度,关于直线x=3对称,纵坐标不变,横坐标之和为3的2倍.解:(1)△A 2B 2C 2的三个顶点坐标分别是A 2(4,0),B 2(5,0),C 2(5,2); (2)如图1,当0<a≤3时,∵P 与P 1关于y 轴对称,P (-a ,0),∴P 1(a ,0), 设P 2(x ,0),又∵P 1与P 2关于直线x=3对称,∴3-x=a -3,解得:x=6-a . 则PP 2=6-a (-a )=6-a+a=6.综上,PP 2的长度为6.方法规律:问题(2)中,P 1,P 2关于直线x=3对称,P 1与P 2的相对位置两种情况,因此分a >3,0<a≤3两类讨论,需要结合图形试试,发现P 1与P 2有两种相对位置,才能准确进行分类.A 链接中考1.小明家的坐标为(1,2),小丽家的坐标为(-2,-1),则小明家在小丽家的( )A .东南方向B .东北方向C .西南方向D .西北方向 2.多层楼的电影院确定一个座位需要的数据是( )A .1个B .2个C .3个D .4个关于原点对称关于y 轴对称关于x 轴对称图1图23.方格纸上有A .B 两点,若以A 点为原点建立平面直角坐标系,则点B 的坐标为(-5,3),若以点B 为原点建立平面直角坐标系,则点A 的坐标为( )A .(-5,3)B .(5,-3)C .(-5,-3)D .(5,3)4.平面直角坐标系中,点P (-2,-3)先向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为( )A .(-3,0)B .(-1,0)C .(-3,-6)D .(-1,6) 5.如图所示的平面坐标系内,画在透明胶片上的 □ABCD ,点A 的坐标是(0,2),现将这张胶片平移,使点A 落在点A ′(5,-1)处,则此平移可以是( )A .先向右平移5个单位,再向下平移1个单位B .先向右平移5个单位,再向下平移3个单位C .先向右平移4个单位,再向下平移1个单位D .先向右平移4个单位,再向下平移3个单位6.如图,把图中的⊙A 经过平移得到⊙O ,如果左图中⊙A 上一点P 的坐标为(m ,n ),那么平移后在右图中的对应点P ′的坐标为( )A .(m +2,n +1)B .(m -2,n -1)C .(m -2,n +1)D .(m +2,n -1)7.如图,在平面直角坐标系中,右边的图案是由左边的图案经过平移得到的,左边图案中左、右眼睛的坐标分别是(-4,2),(-2,2),右边图案中左眼的坐标是(3,4),则右边图案中右眼的坐标是 .8.如图,用方向和距离表示火车站相对于仓库的位置是 , 若仓库的位置用(1,1)表示,那么火车站的位置表示为 . 9如图所示,长方形ABCD 在坐标平面内,点A 的坐标是1),且边AB ,CD 与x 轴平行,边AD ,BC 与y 轴平行,AB =4,AD =2. (1)求点B ,C ,D 三点的坐标;(2)怎样平移,才能使A 点与原点重合?10.如图,正方形ABCD 的边长为4,请你建立适当的坐标系,写出各个顶点的坐标.第7题图第6题图第5题图第8题图北65412313.在直角坐标系中,描出点(1,0),(1,2),(3,1),(1,1),并用线段依次连接起来. (1)纵坐标不变,横坐标分别加2,所得图案与原图相比,有什么变化? (2)横坐标不变,纵坐标分别乘以-1呢? (3)横坐标,纵坐标都变成原来的2倍呢?14.如图所示,在雷达探测区内,可以建立平面直角坐标系表示位置,某次行动中,当我方两架飞机在 A (-1,-2)与B (3,2)位置时,可疑飞机在(-1,6)位置,你能找到这个直角坐标系的横、纵坐标的位置吗?把它们表示出来,并确定可疑飞机的所处方位.15.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做P 的伴随点,已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4……,这样依次得到点A 1,A 2,A 3 ……,A n . (1)若点A 1的坐标为(3,1),则点A 3的坐标为 ,点A 坐标为 ;(2)若点A 1的坐标为(a ,b ),对于任意的正整数n ,点A n ,均在x 轴上方,求a ,b 应满足的条件.C 决战中考D CBA16.如图所示,⊙A1B1C1是由⊙ABC平移后的到的,已知⊙ABC中任意一点P(x0,y0)经过平移后对应点为P0(x0-6,y0-2).(1)已知A(2,6),B(1,3),C(5,3),Q(3,5),请写出A1,,B1,C1,Q1的坐标(2)式说明⊙A1B1C1是如何由⊙ABC平移得到的?(3)连接A1,A,CC1,求出五边形A1B1C1CA的面积.17.在平面直角坐标系中,已知O是原点,四边形ABCD是长方形,A,B,C的坐标分别是A(-3,1),B(-3,3),C(2,3).(1)求点D的坐标;(2)将长方形ABCD以每秒1个单位长度的速度水平向右平移,2秒钟后所得到的四边形A1,B1C1D1四个顶点的坐标格式多少?(3)18.如图1,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现在同时点A、B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点CD,连接AC,BD.(1)求点C、D的坐标及四边形ABCD的面积S四边形ABCD(2)在y轴上是否存在一点P,连接P A,PB,使得S⊙P AB= S四边形ABCD,若存在这样一点,求出点P坐标,若不存在,试说明理由;(3)点P是线段BD上一个动点,连接PC,PO,当点P在BD上移动时(不于B,D重合)给出下列结论⊙DCP BOPCPO∠+∠∠的值不变;⊙DCP CPOBOP∠+∠∠的值不变,其中有且只有一个是正确的,请你找出这个正确结论并求值.19.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动,它从A处出发去看望B,C,D处的其他甲虫,规定:向上向右为正,向下向左为负,如果从A到B记为AB(+1,+4),从BA到记作BA (-1,-4),其中第一个数表示左右方向,第二个数表示上下方向. (1)图中AC ( , ),BC ( , ),CD ( , );(2)若这只甲虫从A 处去甲虫P 处行走的路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出P 的位置;(3)若这只甲虫行走的路线为AB ,请计算该甲虫走过的路程;(4)若图中另有两个格点M ,N ,且M (3-a ,b -4),MN (5-a ,b -2)则N A 应记为什么?20.阅读理解: 我们知道:任意两点关于他们所连线段的中心成中心对称 ,在平面直角坐标系中,任意两点P (x 1,,y 1),Q (x 2,y 2),的对称中心的点坐标为(1212,22x x y y ++). 观察应用(1)如图,在平面直角坐标系中,若点P 1,(0,-1),P 2(2,-3)的对称中心是点A ,则A 的坐标为 ;(2)另取两点B (-1,6.2),C (-1,0),有一电子青蛙从P 1,处开始依次关于点A ,B ,C 做循环对称跳动,即第一次跳到点P 1关于点A 的对称点P 2处,接着跳到P 2关于点B 对称的P 3 ,第三次再跳到点P 3 关于点C 的对称点P 4处,第四次再跳到点P 4 关于点A 的对称点P 5处,…则点P 3,P 8的坐标分别是 , ; (3)求出点P 2016的坐标。
坐标方法的简单应用坐标方法是数学中常用的一种计算方法,用于研究点在平面或空间中的位置和运动。
它是现代几何学中最重要和最基本的工具之一,广泛应用于物理学、工程学、计算机科学等领域。
在平面坐标系中,我们可以用两个数值来确定一个点的位置,分别表示在横轴和纵轴上的位置。
这两个数值称为点的横坐标和纵坐标。
在直角坐标系中,我们用一个原点和两个互相垂直的轴线来确定坐标系。
横轴被称为x轴,纵轴被称为y轴。
坐标轴的正方向可以根据需要来规定。
1.描述和定位点的位置:利用坐标方法,我们可以方便地描述和定位平面中各个点的位置。
例如,点A的坐标为(2,3),表示这个点在x轴上的坐标为2,在y轴上的坐标为3、通过坐标,我们可以准确地表示和定位点的位置。
2.确定线段的长度和中点:坐标方法可以用于计算线段的长度和中点的坐标。
对于平面上两个点A(x1,y1)和B(x2,y2),线段AB的长度可以通过勾股定理计算得出:AB的长度=√[(x2-x1)²+(y2-y1)²]。
中点的坐标可以通过取两点横坐标和纵坐标的平均值得出:中点的横坐标=(x1+x2)/2,中点的纵坐标=(y1+y2)/23.求解直线的斜率和方程:利用坐标方法,我们可以求解直线的斜率和方程。
对于两个不重合的点A(x1,y1)和B(x2,y2),直线AB的斜率可以通过斜率公式计算得出:斜率=(y2-y1)/(x2-x1)。
通过点斜式或一般式,我们可以得到直线的方程。
4.计算三角形的面积和判定重合:坐标方法可以用于计算平面上三角形的面积。
对于三个顶点A(x1,y1),B(x2,y2)和C(x3,y3),三角形ABC的面积可以通过海伦公式计算得出:面积=√[s(s-a)(s-b)(s-c)],其中s是三角形周长的一半,a、b、c是三边的长度,可以通过坐标计算得到。
坐标方法还可以用于判定两个三角形是否重合,通过计算各个顶点的坐标是否相等,可以得出结果。
5.解决简单的几何问题:坐标方法可以帮助我们解决一些简单的几何问题。