李雅普诺夫稳定性理论中V函数的构造研究_任斌
- 格式:pdf
- 大小:798.51 KB
- 文档页数:4
Lyapunov稳定性理论概述Lyapunov Lyapunov稳定性理论概述稳定性理论概述稳定性理论概述稳定性理论是19 世纪80 年代由俄国数学家Lyapunov创建的,它在自动控制、航空技术、生态生物、生化反应等自然科学和工程技术等方面有着广泛的应用,其概念和理念也发展得十分迅速。
通过本学期“力学中的数学方法”课程的学习,我对此理论的概况有了一些认识和体会,总结于本文中。
一,稳定性的概念稳定性的概念初始值的微分变化对不同系统的影响不同,例如初始值问题ax dtdx= ,x(0)=x 0 , t≥0,x 0≥0 (1) 的解为ex att x 0)(=,而x=0 是(1)式的一个解。
当a f 0时,无论|x 0|多小,只要|x 0| ≠ 0 ,在t→+∞时,总有x(t)→ ∞,即初始值的微小变化会导致解的误差任意大,而当a ?0时,ex att x 0)(=。
与零解的误差不会超过初始误差x 0,且随着t 值的增加很快就会消失,所以,当|x 0|很小时,x(t)与零解的误差也很小。
这个例子表明a f 0时的零解是“稳定”的。
下面,我们就给出微分方程零解稳定的严格定义。
设微分方程),(x t f dtdx =,x(t 0)=x 0 , x ∈R n(2) 满足解存在唯一定理的条件,其解x(t)=x(t,t 0,x 0)的存在区间是),(+∞?∞,f(t,x)还满足条件:f (t ,0)=0 (3)(3)式保证了x(t) = 0 是(2)式的解,我们称它为零解。
这里给出定义1:若对任意给定的ε > 0,都能找到δ=δ(ε,t 0),使得当||x 0||<δ时的解满足x ( t,x 0 , x 0 ) || x ( t, t 0 , x 0 ) || <ε, t ≥ t 0 , 则称(2)式的零解是稳定的,否则称(2)式的零解是不稳定的。
二,Lyapunov稳定性定理Lyapunov稳定性定理稳定性定理Lyapunov第二法(即直接法)探讨了一个二维自治系统的稳定性,并在这些原始几何思想的基础之上,经由分析语言的提炼概括,给出了1条稳定性定理,1条渐近稳定性定理和2条不稳定性定理,这几条定理被誉为稳定性的基本定理,为稳定性理论奠定了牢固的基础。
04第四章李雅普诺夫稳定性理论汇总李雅普诺夫稳定性理论是数学中一项重要的稳定性理论,对于研究动力系统的稳定性具有重要的指导意义。
该理论由俄罗斯数学家李雅普诺夫于19世纪末和20世纪初提出,后经实践证明,被广泛应用于不同领域的研究中。
李雅普诺夫稳定性理论的核心思想是通过构造李雅普诺夫函数来分析系统的稳定性。
李雅普诺夫函数是一个满足一定条件的实数函数,它能够度量系统中各个状态的变化情况,并通过数学分析得出系统状态的稳定性。
在李雅普诺夫稳定性理论中,一般使用正定函数来构造李雅普诺夫函数。
对于一个动力系统,假设其状态空间为n维实数向量,系统的演化过程可以表示为一个关于状态变量的微分方程。
为了判断系统在其中一状态的稳定性,需要构造一个函数V(x),其中x表示状态变量。
如果函数V(x)满足以下两个条件:1.V(x)是正定函数,即对于所有的x,都有V(x)>0,且只有在x=0时,V(x)=0成立。
2.对于系统中任意两个状态x1和x2,如果V(x2)>V(x1),则在系统演化的过程中,x2的状态比x1更不稳定。
那么,可以推导出系统在状态x=0附近的稳定性。
如果对于所有的状态x,有V(x)>V(x=0),那么系统就是在x=0处的稳定点。
如果只有在x=0附近,存在一个圆盘区域,使得对于所有的状态x,有V(x)>V(x=0),那么系统就是局部稳定的。
通过构造李雅普诺夫函数,可以得出系统的稳定性信息。
对于局部稳定性,可以通过计算雅普诺夫函数的导数来得到更详细的信息。
如果导数小于零,则系统是渐进稳定的;如果导数等于零,则系统是边界稳定的;如果导数大于零,则系统是不稳定的。
李雅普诺夫稳定性理论不仅适用于连续系统,也适用于离散系统。
对于离散系统,李雅普诺夫函数的构造和分析方式与连续系统类似,只是微分方程变为差分方程。
总结起来,李雅普诺夫稳定性理论是一种基于构造李雅普诺夫函数来分析系统稳定性的方法。
通过构造正定函数,可以得出系统的稳定性信息,并通过李雅普诺夫函数的导数来得到更详细的稳定性判断。
李雅普诺夫稳定性分析常微分⼤作业--李雅普诺夫稳定性11091059洪⼀洲从19世纪末以来,李雅普诺夫稳定性理论⼀直指导着关于稳定性的研究和应⽤。
不少学者遵循李雅普诺夫所开辟的研究路线对第⼆⽅法作了⼀些新的发展。
⼀⽅⾯,李雅普诺夫第⼆⽅法被推⼴到研究⼀般系统的稳定性。
例如,1957年,В.И.祖博夫将李雅普诺夫⽅法⽤于研究度量空间中不变集合的稳定性。
随后,J.P.拉萨尔等⼜对各种形式抽象系统的李雅普诺夫稳定性进⾏了研究。
在这些研究中,系统的描述不限于微分⽅程或差分⽅程,运动平衡状态已采⽤不变集合表⽰,李雅普诺夫函数是在更⼀般意义下定义的。
1967年,D.布肖对表征在集合与映射⽔平上的系统建⽴了李雅普诺夫第⼆⽅法。
这时,李雅普诺夫函数已不在实数域上取值,⽽是在有序定义的半格上取值。
另⼀⽅⾯,李雅普诺夫第⼆⽅法被⽤于研究⼤系统或多级系统的稳定性。
此时,李雅普诺夫函数被推⼴为向量形式,称为向量李雅普诺夫函数。
⽤这种⽅法可建⽴⼤系统稳定性的充分条件。
1.李雅普诺夫稳定性概念忽略输⼊后,⾮线性时变系统的状态⽅程如下),(t x f x= (1)式中,x 为n 维状态向量;t 为时间变量;),(t x f 为n 维函数,其展开式为 12(,,,,)i i n x f x x x t = n i ,,1 =假定⽅程的解为 ),;(00t x t x ,x 0和t 0 分别为初始状态向量和初始时刻,0000),;(x t x t x =。
平衡状态如果对于所有t ,满⾜0),(==t x f xe e (2)的状态x e 称为平衡状态(⼜称为平衡点)。
平衡状态的各分量不再随时间变化。
若已知状态⽅程,令0=x所求得的解x ,便是平衡状态。
对于线性定常系统Ax x= ,其平衡状态满⾜0=e Ax ,如果A ⾮奇异,系统只有惟⼀的零解,即存在⼀个位于状态空间原点的平衡状态。
⾄于⾮线性系统,0),(=t x f e 的解可能有多个,由系统状态⽅程决定。
第5章李雅普诺夫稳定性分析本章讨论李雅普诺夫稳定性分析。
主要介绍李雅普诺夫稳定性的定义以及分析系统状态稳定性的李雅普诺夫理论和方法;着重讨论李雅普诺夫第二法及其在线性系统和3类非线性系统的应用、李雅普诺夫函数的构造、李亚普诺夫代数(或微分)方程的求解等。
最后介绍李亚普诺夫稳定性问题的Matlab 计算与程序设计。
一个自动控制系统要能正常工作,必须首先是一个稳定的系统,即当系统受到外界干扰时它的平衡被破坏,但在外界干扰去掉以后,它仍有能力自动地恢复在平衡态下继续工作。
系统的这种性能,叫做稳定性。
例如,电压自动调解系统中保持电机电压为恒定的能力、电机自动调速系统中保持电机转速为一定的能力以及火箭飞行中保持航向为一定的能力等。
具有稳定性的系统称为稳定系统,不具有稳定性的系统称为不稳定系统。
也可以说,系统的稳定性就是系统在受到外界干扰后,系统状态变量或输出变量的偏差量(被调量偏离平衡位置的数值)过渡过程的收敛性,用数学方法表示就是ε≤Δ∞→)(Lim t x t 式中,)(t x Δ为系统被调量偏离其平衡位置的变化量;ε为任意小的规定量。
如果系统在受到外扰后偏差量越来越大,显然它不可能是一个稳定系统。
在经典控制理论中,借助于常微分方程稳定性理论,产生了许多线性定常系统的稳定性判据,如劳斯-胡尔维茨(Routh-Hurwitz)判据和奈奎斯特判据等,都给出了既实用又方便的稳定性判别及设计方法。
但这些稳定性判据仅限于讨论SISO 线性定常系统输入输出间动态关系,讨论的是有界输入有界输出(BIBO)稳定性,未研究系统的内部状态变化的稳定性。
再则,对于非线性或时变系统,虽然通过一些系统转化方法,上述稳定判据尚能在某些特定系统和范围内应用,但是难以胜任一般系统。
现代控制系统的结构比较复杂,大都存在非线性或时变因素,即使是系统结构本身, 往往也需要根据性能指标的要求而加以改变,才能适应新的情况,保证系统的正常或最佳运行状态。
讲义81. 李雅普诺夫(Lyapunov )函数分析本讲中,对于一些有*E (,)0t S r w ⎡⎤=⎣⎦的*γ,我们研究1(,)t t t t t r r S r w γ+=+的收敛性。
回顾一下确定性实例中的Lyapunov 函数分析,我们选取了函数()V r 使得** ()0, ,()()0, , ()0.T V r r V r S r r r V r •≥∀•∇<≠•∇=如收敛性的论证为:我们发现()t V r 随时间减小并且有下限,因此,()t V r 收敛。
对V 和S 采用技术条件,可以证明*t r r →。
现在转到随机实例,用t F 表示到t 时刻的过程历史记录,显然,t F 可表示为{},,,,,,.t l l t r l t w l t l t γ=≤<≤F注意,步长t γ依赖于随机的历史记录,而步依赖于扰动t w 。
定义欧几里德范数122()T V V V =。
定理1 假设V ∃使得(a )()0, ,V r r ≥∀(b )L ∃使得22()()V r V r L r r ∇−∇≤−(李普希茨连续Lipschitz continuity) (c )12,K K ∃使得221222E (,)(),t t t t S r w K K V r ⎡⎤≤+∇⎣⎦F(d )c ∃使得22()E (,)().T t t t t t V r S r w c V r ∇⎡⎤≤−∇⎣⎦F 则,如t γ满足0t t γ∞==∞∑和20t t γ∞=<∞∑,有z ()t V r 收敛。
z lim ()0t t V r →∞∇=z 每一个t r 的极限点r 满足()0V r ∇=我们将证明某特例的收敛性,该特例对于一些*r 有2*122()V r r r =−。
定理2 假设2*122()V r r r=−满足(a )12,K K ∃使得2122E (,)(),t t t t S r w K K V r ⎡⎤≤+⎣⎦F(b )c ∃使得()E (,)().T t t t t t V r S r w cV r ∇⎡⎤≤−⎣⎦F则,如t γ满足0t t γ∞==∞∑和20t t γ∞=<∞∑,有*t r r →, w.p.1(以概率1)我们用下面的上鞅收敛定理证明定理2。