控制系统李雅普诺夫稳定性分析
- 格式:ppt
- 大小:1.28 MB
- 文档页数:72
8.3控制系统的李雅普诺夫稳定性分析稳定性描述系统受到外界干扰,平衡工作状态被破坏后,系统偏差调节过程的收敛性。
它是系统的重要特性,是系统正常工作的必要条件。
经典控制理论用代数判据、奈氏判据、对数频率判据、特征根判据来判断线性定常系统的稳定性,用相平面法来判断二阶非线性系统的稳定性,这些稳定性判据无法满足以多变量、非线性、时变为特征的现代控制系统对稳定性分析的要求。
1892年,俄国学者李雅普诺夫建立了基于状态空间描述的稳定性理论,提出了依赖于线性系统微分方程的解来判断稳定性的第一方法(称为间接法)和利用经验和技巧来构造李雅普诺夫函数借以判断稳定性的第二方法(称为直接法)。
李雅普诺夫提出的这一理论是确定系统稳定性的更一般的理论,不仅适用于单变量、线性、定常系统,还适用于多变量、非线性、时变系统,它有效地解决过一些用其他方法未能解决的非线性微分方程的稳定性问题,在现代控制系统的分析与设计中,得到了广泛的应用与发展。
8.3.1 李雅普诺夫稳定性概念忽略输入后,非线性时变系统的状态方程为(8-70) (,)t =&xf x 式中 x —n 维状态向量;T —时间变量;(,)t f x —n 维函数,其展开式为12(,,,,)i i n xf x x x t =&L (n i ,,1L =) 假定方程的解为 ,x 0和t 0 分别为初始状态向量和初始时刻,。
00(;,)t t x x 0000(;,)t t =x x x 1.平衡状态 如果对于所有t ,满足(,)e e t =&xf x =0 (8-71) 的状态x e 称为平衡状态(又称为平衡点)。
平衡状态的各分量不再随时间变化。
若已知状态方程,令 所求得的解x ,便是平衡状态。
0=&x对于线性定常系统,其平衡状态满足=&xAx 0e =Ax ,如果矩阵A 非奇异,系统只有唯一的零解,即存在一个位于状态空间原点的平衡状态。
第四章稳定性与李雅普诺夫方法稳定性与李雅普诺夫方法是控制理论中的两个重要概念。
稳定性是控制系统分析中的基本问题之一,它描述了系统在受到干扰后能否回到平衡状态的能力。
李雅普诺夫方法是一种常用的稳定性分析方法,通过构造李雅普诺夫函数来判断系统的稳定性。
稳定性是控制系统设计中最基本的要求之一、一个稳定的系统能够在受到干扰后迅速恢复到平衡状态,而不会发生不可控制的震荡或不稳定的行为。
稳定性可以分为两种类型:渐近稳定性和有界稳定性。
渐近稳定性要求系统的状态能够收敛到一个稳定的平衡点,而有界稳定性要求系统的状态能够保持在一个有限范围内。
李雅普诺夫方法是一种通过构造李雅普诺夫函数来判断系统稳定性的方法。
李雅普诺夫函数是一个标量函数,它满足以下条件:1)对于任意非零的向量,李雅普诺夫函数的导数都是负的或零;2)当且仅当系统达到稳定时,李雅普诺夫函数的导数为零。
通过构造李雅普诺夫函数并分析其导数的符号,可以判断系统的稳定性。
在实际应用中,人们通常使用李雅普诺夫直接法、李雅普诺夫间接法和李雅普诺夫-克拉洛夫稳定性定理等方法来进行稳定性分析。
其中,李雅普诺夫直接法是最常用的方法之一,它通过选择一个合适的李雅普诺夫函数来判断系统的稳定性。
如果可以找到一个李雅普诺夫函数,使得该函数的导数对于所有非零的初始条件都是负的,则系统是渐近稳定的。
李雅普诺夫间接法是通过构造一个李雅普诺夫方程来判断系统的稳定性。
李雅普诺夫方程是一个微分方程,其中包含系统的状态向量和一个非负标量函数,满足一定的条件。
如果可以找到一个满足李雅普诺夫方程的解,并且该解是有界的,则系统是有界稳定的。
李雅普诺夫-克拉洛夫稳定性定理是李雅普诺夫方法的重要理论基础。
该定理表明,如果系统的李雅普诺夫函数存在并且连续可导,并且李雅普诺夫函数的导数满足一定的条件,则系统是渐近稳定的。
这个定理为李雅普诺夫方法的应用提供了重要的理论依据。
总之,稳定性与李雅普诺夫方法是控制理论中基础且重要的概念。