PAS 2050应用
- 格式:doc
- 大小:56.50 KB
- 文档页数:4
产品碳足迹评价标准比较分析作者:邱岳进李东明曹孝文朱烨来源:《合作经济与科技》2016年第20期[提要] 本文对国际上应用最广、影响最大的两种产品碳足迹评价标准:国际标准ISO 14067和英国PAS 2050技术规范的制定背景及基本特征进行阐述,并对两者进行详细比较,分析其一致性和差异性,以便为我国产品碳足迹标准体系的建立以及国际绿色贸易壁垒的应对提供参考。
关键词:产品碳足迹;标准;ISO 14067;PAS 2050;比较本文为国家质量监督检验检疫总局科技项目(项目编号:2015IK137)课题输出中图分类号:F744 文献标识码:A收录日期:2016年8月26日一、前言气候变化使发展中国家面临越来越严峻的挑战。
为采取改善气候变化的措施,产品生产商越来越多地被零售商询问关于产品温室气体(GHG)的测量以及减排的问题,全球有1,000多家包括沃尔玛、IBM、宜家等著名企业将“低碳”作为其供应链的必需,其中部分企业还要求其供应商提供碳标签。
产品碳足迹的认证能够增强产品或服务的竞争力,提升产品品牌形象。
产品碳足迹标准发展趋势较大程度上是由发达国家及新兴经济体的零售商和政府引导。
英国于2008年开始实施PAS2050《商品和服务在生命周期内的温室气体排放评价规范》,同时,法国、瑞士、新西兰、日本、韩国、泰国等国家亦相继开始产品碳足迹的研究,产品碳足迹的国际标准也以技术规范的形式(ISO/TS 14067:2013)于2013年正式出台。
其中影响最大、应用范围最广的是PAS 2050规范和ISO 14067国际标准。
二、国际主要产品碳足迹标准介绍(一)PAS 2050基本特征。
PAS 2050是第一个产品碳足迹核算标准,也是ISO 14067正式出台前应用最广的产品碳足迹评价规范,该规范是由英国碳信托和英国环境、食品和乡村事务部联合发起,英国标准协会(BSI)为评价产品生命周期内温室气体排放而编制的一套公众可获取的规范,于2008年10月公布,旨在对评估产品和服务生命周期内温室气体排放的要求做出明确的规定,使公司、客户和其他利益相关方通过对产品碳足迹的核算,在第一时间采取对于环境有益的恰当决策。
Energy Conservation Management and Technology2019年 第9卷 第4期V ol.9 No. 4 2019铁路节能环保与安全卫生Railway Energy Saving & Environmental Protection & Occupational Safety and Health 节能管理与技术全生命周期碳排放核算方法及其应用周新军1,满朝翰2((1.中国铁道科学研究院集团有限公司 铁道科学技术研究发展中心,北京 100081;2.中国铁道科学研究院集团有限公司 节能环保劳卫研究所,北京 100081)摘 要:对国内外关于全生命周期碳排放核算的理论与实践进行了较为系统的梳理,在比较分析的基础上,界定了全生命周期碳排放的阶段划分、排放边界、排放因子和排放主体等关键要素,并对全生命周期碳排放核算方法在实践中的进一步应用进行了探讨。
关键词:全生命周期;碳排放核算;阶段划分;排放边界;影响因子中图分类号:F206 文献标识码:A DOI :10.16374/ki.issn2095-1671.2019.0042文章编号:2095-1671 (2019) 04-0010-05碳排放核算方法是碳排放研究中的一个基本问题,也是对碳排放进行定量分析并确定排放主体承担相应社会责任的重要基础。
近年来,学者们从不同的角度对碳排放核算方法进行了分析和探讨,比较而言,从全生命周期视角(Life Cycle Assessment ,LCA)进行的碳排放研究受到了更多的关注。
一方面,这一视角的研究更有利于让人们了解碳排放的源头及全过程;另一方面,有利于人们在实践中对碳排放进行系统性和综合性的治理。
为此,本文试图通过对近年来有关全生命周期碳排放核算方法研究及其应用成果的梳理,为深化铁路运输企业全生命周期碳排放的研究提供一种方法论。
1 全生命周期碳排放核算方法对于不同行业的碳排放,目前全世界主要存在2种权威的框架性标准。
文|北京印刷学院 黄少云 李东立 许文才PAS 2050规范让产品碳足迹无所遁形编者按:目前在我国包装印刷行业中,“碳足迹”早已不是什么新鲜词汇了,但具体如何计算、评价一款产品的碳足迹,对于国内绝大多数包装印刷企业而言还是一个难解的谜题。
我们不妨将眼光放远些,看看国外同行们是如何解决这一问题的。
产品碳足迹是指一种产品在生命周期内所排放的温室气体(GHG,主要是CO2)的总量。
积极开展产品碳足迹评价工作能有效掌握碳排放途径和排放量,从而减少温室气体的排放。
我国包装印刷行业本身就是高能耗、高污染的行业,在应对全球气候变化、发展低碳经济的大背景下,应该加紧开展行业内部的碳足迹评价工作,尤其是行业内一些出口企业,为了避免绿色贸易壁垒给企业带来损失,更应关注并借鉴国外的碳足迹评价方法。
目前碳足迹评价方法主要有3种:一是由ISO(国际标准化组织)制定的ISO 14060标准以及将于2012年发布的ISO 14067标准,二是由WRI(世界资源研究所)和WBCSD(世界可持续发展工商理事会)联合制定的温室气体议定书GHG Protocol,三是由BSI(英国标准协会)制定的PAS 2050产品碳足迹评价规范(以下简称“PAS 2050规范”)。
其中,PAS 2050规范是最常被采用和参考的碳足迹评价体系。
本文就PAS 2050规范做一些简单介绍。
PAS 2050规范简介PAS 2050规范全称为《商品和服务在生命周期内的温室气体排放评价规范》,由BSI,碳基金,英国环境、食品与乡村事务部共同支持和完成,并于2008年10月正式发布,是世界首部评价产品碳足迹的体系。
其并不是一种严格意义上的标准,而只是一种具有协商性质的公共可碳足迹标签专题报道Special Report17综述篇2011/03用规范。
PAS 2050规范是基于产品层面而不是组织层面的碳足迹评价方法,它提供了一种计算产品(包括商品和服务)从原材料采购到生产、分销、使用和废弃物处理整个生命周期内GHG排放量的基本流程。
STANDARDS SUPPORTING A LOW CARBON ECONOMY标准支持低碳经济British Standards Institution英国标准协会The carbon emission background in UK英国碳排放背景PAS 2050(碳足迹)& PAS 2060(碳中和)Current Development 当前进展Brian Such MCMI 萨博恩2 The BSI Group 英国标准协会The BSI Group 英国标准协会•Founded in 1901, BSI was incorporated by Royal Charter in 1929 and became the first national standards institution in the world.成立于1901年,并于1929年获得英国皇家特许,成为世界上第一个国家标准机构。
•Business covers over 110 countries业务遍及110多个国家•Headquartered in UK, 2,250 staff worldwide总部在英国,全世界2250 职员•56 permanent offices globally全球56个注册办事处sub-companies in Shanghai, Shenzhen, Guangzhou and Hongkong, contact sites in other 9 major cities.名员工,总部设在北京,在上海、深圳、广州和香港设有分公司、同时在其他9个主要城市具Provide standards-based total solutions:为中国客户提供基于标准的整体解决方案:产品检测英国个成员国其他欧盟15个成员国荷兰波兰西班牙意大利德国道路交通(化石燃料消耗)(化石燃料燃烧)(过程废物管理公用电和热的生产其他活动水泥生产仅指过程中的排放)石油精炼肠内发酵Concern about climate change 关注气候变化Emergence of: 以下两点的重要性:The concept of the carbon footprint碳足迹概念Differing views on how to define and quantify 对于如何定义和量化的不同观点UK Government Department for Environment, Food and•Simply making a statement about your carbon footprint (no matter how accurate and reliable the quantification) will not necessarily carry much weight withconsumers who buy your products!仅仅发表一个关于你的碳足迹的声明(不管定量结果有多准确可靠)不一定减轻购买你产品的消费者的担心!•Who can say whether your footprint is good or bad,?谁能说你的碳足迹是好还是坏呢?•Carbon neutrality; zero footprint; leaving no mark on the environment!碳中和;零足迹;不留下任何环境影响!较大型协议会通常由25个以上利益相关者组成。
3.2碳管理技术3.2.1碳标准近年来,随着国际相关组织和发达国家的大力推行,碳足迹开始在工业节能减排、产品生态标识和国际碳交易等领域广泛应用。
碳足迹揭示了终端消费领域人类活动对于全球气候变化的影响,其量化方法主要采用碳足迹计算方程。
目前出台的碳足迹评价标准主用应用于企业和产品碳足迹评价,如GHG Protocol、ISO14064、PAS 2050、TS Q 0010,中国质量管理协会在2010年5月发布了《国家绿色低碳产品及企业减排信用评价通则》等。
3.2.2碳核算碳核算方法包括碳核算方法的选择、碳减排计报告的编制及其外部鉴证和审计、年度间碳排放差异的比较、温室气体直接减排和间接减排的吨数等。
温室气体减排核算还包括每个国家所获得的碳排放额度和具体的减排目标、每个国家内部每个企业的减排数量。
3.2.3 碳审计碳审计是用来衡量个人或者企业的温室气体排放的具体情况。
2004年,世界资源研究所及世界可持续发展工商理事会(WRI/WBCSD)制定了《温室气体协书:企业核算与报告准则》,这个准则涵盖了如何确认及计算温室气体排放量,如何选择排放量估算方法,提供的报告应该包含的内容等一系列内容,这为碳审计提供了指导方向,并为温室气体排放规定了量化标准,目前所有的碳审计有其特殊之处,其中确认及计算温室气体排放量是碳审计的难点。
主要可以采取以下流程:1)确定温室气体的排放源。
一般来说,典型的温室气体排放源分为:固定燃烧源(如锅炉、燃烧器等)、移动燃烧源(如公司的汽车、货车等)、制成排放源(设备和生产系统有意无意排放的温室气体)、溢散排放源(如空调和冷冻设备使用时释放的氢氟碳化物及全氟化碳等)。
2)确定碳审计的操作范围。
主要是分三个范畴:直接温室气体的排放及减除、使用能源间接引起的温室气体排放和其他间接温室气体排放。
3)选择好排放量的估算方法。
一般来说有两种方法:直接检测和运用适当的计算方法和排放系数。
直接检测由于受现实技术制约,不太常用。
中国橡胶深度DEPTH REPORTS“产品碳足迹”时代来临 橡胶行业“碳”索不止作者 郝章程革委等5部门2023年10月13日联合印发《关于加快建立产品碳足迹管理体系的意见》(发改环资〔2023〕1529号)。
1529号文件称,计划到2025年,国家层面出台50个左右重点产品碳足迹核算规则和标准,2030年达到200个左右。
在省级层面,橡胶轮胎产品碳足迹核算工作,山东省走在了最前面。
山东省2023年2月28日下发《山东省产品碳足迹评价工作方案(2023~2025年)》(鲁环发〔2023〕8号)文件,计划在2024年完成200家重点企业的碳足迹评价、核算,其中就包括橡胶轮胎重点企业。
在行业、企业层面,越来越多的经济支柱产业、知名跨国企业,对其产业链上下游产品提出碳足迹管理要求。
有责任感、使命感的橡胶轮胎行业龙头企业,也开始付诸行动。
比如,国务院国资委大力推动央企控股上市公司披露ESG专项报告,风神股份、圣奥化学等走在了前面。
证监会鼓励A股上市公司发布可持续发展报告或ESG(环境、社会与治理)报告,正在面向社会公开征求议(SBTi)成员企业。
凭借在环境方面的优秀管理与实践,圣奥化学、科迈化工、兴达股份、贝卡尔特等在EcoVadis企业社会责任评级中取得优异成绩。
在“双碳”背景下,碳足迹政策频出、产业链供应链的要求、企业社会责任感和使命感,共同驱动企业进行碳足迹计算与核查。
产品碳足迹时代铿锵走来,已然成为最直观的环保新坐标。
产品碳足迹,开启低碳生产之旅低碳经济,是落实“产品碳足迹”的具体措施,也是橡胶轮胎行业一直追求的发展目标。
橡胶轮胎行业持续完善绿色制造体系,以碳减排的实际行动“点绿成金”,助力工业领域碳达峰、碳中和。
如使用环保新材料、生物基材料及可再生和可循环材料,原辅材料减量使用,能源高效利用和提高清洁能源使用比例,绿色低碳和可降解新产品开发,改进生产工艺缩短制造流程提高生产效率,打造绿色工厂、智26深度DEPTH REPORTS 出行方式。
How to carbon footprint your products, identify hotspots and reduce emissions in yoursupply chainThe Guide to PAS 2050:2011The Guide toPAS2050:2011How to carbon footprint your products, identifyhotspots and reduceemissions in yoursupply chainAcknowledgementsThe development of this Guide was co-sponsored by:Defra (Department for Environment, Food and Rural Affairs)DECC (Department of Energy and Climate Change)BIS (Department for Business, Innovation and Skills)Acknowledgement is given to ERM who authored this Guide. ERM has completed over 1,000 carbon footprints across more than 50 sectors and provides carbon footprinting and carbon reduction services to both UK and international clients. Acknowledgement is also given to the following organizations who assisted in its development:ADAS UK LimitedDefraFood and Drink FederationInstitute of Environmental Management and AssessmentCarbon TrustFirst published in the UK in 2011byBSI389 Chiswick High RoadLondon W4 4AL© British Standards Institution 2011All rights reserved. Except as permitted under the Copyright, Designs and Patents Act 1988, no part of thispublication may be reproduced, stored in a retrieval system or transmitted in any form or by any means –electronic, photocopying, recording or otherwise – without prior permission in writing from the publisher.Whilst every care has been taken in developing and compiling this publication, BSI accepts no liability forany loss or damage caused, arising directly or indirectly in connection with reliance on its contents exceptto the extent that such liability may not be excluded in law.While every effort has been made to trace all copyright holders, anyone claiming copyright should get intouch with the BSI at the above address.BSI has no responsibility for the persistence or accuracy of URLs for external or third-party internet websitesreferred to in this book, and does not guarantee that any content on such websites is, or will remain,accurate or appropriate.The right of ERM to be identified as the author of this Work have been asserted by the authors inaccordance with sections 77 and 78 of the Copyright, Designs and Patents Act 1988.T ypeset in Futura by Helius – Printed in Great Britain by Berforts. British Library Cataloguing in Publication DataA catalogue record for this book is available from the British LibraryISBN 978-0-580-77432-4Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1What is PAS 2050? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1Why should I use PAS 2050? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1Why this Guide? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2The 2011 revision of PAS 2050 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2Making product carbon footprinting work in practice . . . . . . . . . . . . . . . . . . . . .3The stepwise footprinting process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4Step 1. Scoping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51.1. Describe the product to be assessed and the unit of analysis . . . . . . . . . . . .51.2. Draw a map of the product life cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61.3. Agree and record the system boundary of the study . . . . . . . . . . . . . . . . . .71.4. Prioritize data collection activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12Step 2. Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13Types of data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132.1. Draw up a data collection plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142.2. Engaging suppliers to collect primary data . . . . . . . . . . . . . . . . . . . . . . . .142.3. Collecting and using secondary data . . . . . . . . . . . . . . . . . . . . . . . . . . . .162.4. Collecting data for ‘downstream’ activities . . . . . . . . . . . . . . . . . . . . . . . .182.5. Assessing and recording data quality . . . . . . . . . . . . . . . . . . . . . . . . . . . .19Step 3. Footprint calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213.1. General calculation process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213.2. Calculations for specific aspects of the footprint . . . . . . . . . . . . . . . . . . . .30Step4. Interpreting footprint results and driving reductions . . . . . . . . . . . . . . . . . . .424.1. Understanding carbon footprint results . . . . . . . . . . . . . . . . . . . . . . . . . . .42ContentsContents4.2. How certain can I be about the footprint and hotspots? . . . . . . . . . . . . . . .434.3. Recording the footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .444.4. How can I use footprinting to drive reductions? . . . . . . . . . . . . . . . . . . . .45 Annex A. Further examples of functional units . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48 Annex B. Setting functional units and boundaries for services . . . . . . . . . . . . . . . . . .49 Annex C. Orange juice example: data prioritization . . . . . . . . . . . . . . . . . . . . . . . .51 Annex D. Primary data collection tips and templates . . . . . . . . . . . . . . . . . . . . . . . .59 Annex E. Sampling approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 Annex F. A data quality assessment example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 Annex G. Biogenic carbon accounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 Annex H. Worked CHP example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 Annex I. Supplementary requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .741Introduction2Introductionclarification on only one, or a small number, of aspects of the calculation process. The concept of supplementary requirements is akin to ‘Product Category Rules’ (i.e. developed through ISO 140255)and ‘Product rules’ (GHG Protocol Product Standard) and may include either of these (if consistent with PAS 2050).This symbol is used in this Guide to denote where you might be able to usefully refer to supplementaryrequirement documents for further clarity or information.Before you begin to carry out your assessment, look to see if there are supplementary requirements that may help you assess the emissions associated with your product. Where they exist they should always be used.If there are no supplementary requirements for your sector, check to see whether other rules or guidance may be applicable.6)If not, you may even want to consider starting to develop supplementary requirements within your industry.For further discussion of supplementary requirements,see Annex I.The Guide to PAS 2050:20113Making product carbonfootprinting work in practiceProduct carbon footprinting should be used as a practical tool that is tailored to the needs of your organization.It can be used to identify the main sources of emissions for all types of goods and services, from oranges to nappies and from bank accounts to hospitality.Consideration of the goal/objectives of a carbon footprint study is of paramount importance, to ensure that it will deliver the information that you need. In assessing your own organization's needs, consider the following:•Your core business priorities.How could an in-depthunderstanding of the wider GHG impacts, risks and opportunities of goods and services support your strategy/business priorities? Are any products, supply chains or markets particular priorities? What are the expectations of your customers and investors?•Judicial selection of products.Identify the productsthat make most sense to assess and improve, e.g. the top-five best sellers or top-three new designs. Decide where you want to focus your attention, bearing in mind that you cannot do everything at once.•The intended audience for a study. This affectsthe degree of accuracy and resolution needed. A footprint analysis to be used to identify opportunities for reduction can be undertaken efficiently and at a high level initially, to be built on as needed. For external claims, gaining assurance is best practice,and a rigorous approach to data collection will need to be demonstrated.•Your timescale. How does this process fit in withyour product management cycle? Decide how much5)ISO 14025:2006 Environmental labels and declarations – T ype III environmental declarations – Principles and procedures.6)For example, see the PCR library at .tw/about/index.asp.Introduction 45ScopingStep IScoping is the most important step when undertakingany product carbon footprint study. It ensures that theright amount of effort is spent in getting the right datafrom the right places to achieve robust results in themost efficient manner possible.There are four main stages to scoping, and they arebest undertaken sequentially.Step I: Scoping 6‘downstream’ of your activities are not overlooked,such as recyclability at end-of-life, or potential to influence use phase emissions.For each stage on the process map:•provide a description of the activity to aid with datacollection•identify the geographic location of each distinct stepwhere possible•include all transport and storage steps between stages.An example for orange juice is shown in Figure 1.1.3. Agree and record the system boundary of the studyOnce the process map is complete, it can be used to help identify which parts of the overall system will, and will not, be included in the assessment.As an output from this scoping stage, you should clearly document and record the ‘system boundary’ in terms of:•a list of all included life cycle stages (e.g. rawmaterials, production, use, end-of-life)•a list of all included activities and processes within each life cycle stage•a list of all excluded activities and processes,and thesteps taken to determine their exclusion.Consider the following when setting system boundaries:•which GHG emissions and removals to include•cradle-to-gate (i.e. business-to-business) assessmentsversus cradle-to-grave (business-to-consumer)assessments•which processes and activities to include or exclude •time boundaries.In some cases, supplementary requirements maydictate the system boundary that should be used for a particular product system. Where these are compatible with PAS 2050, the system boundary set out in these documents should be used.The Guide to PAS 2050:20117Which GHG emissions and removals to include?According to PAS 2050, a carbon footprint must include all emissions of the 63 GHGs listed in the specification.These include carbon dioxide (CO 2), nitrous oxide (N 2O)and methane (CH 4), plus a wide range of halogenated hydrocarbons including CFCs, HCFCs and HFCs.Each of these types of GHG molecule is capable of storing and re-radiating a different amount of energy,and therefore makes a different contribution to global warming. The relative ‘strength’ of a GHG compared with carbon dioxide is known as its global warmingpotential (GWP), for example 25 for methane.T able 1 shows the global warming potentials and common sources of some of the most important GHGs covered under PAS 2050.Removals of carbon from the atmosphere (e.g. by plants and trees) must also be included in the assessment,except in the case of the biogenic carbon contained within food or feed products. This can be a tricky aspect of the footprint calculation process (e.g. for paper- and wood-based materials), and is a newStep I: Scoping8Figure 1: An example process map for orange juicePAS 2050 requirement. Further guidance is provided in Step 3.2, heading ‘Biogenic carbon accounting and carbon storage’, and Annex G of this Guide.A cradle-to-gate or cradle-to-grave assessment?PAS 2050 allows for two standard types of assessment (Figure 2), which are often used for different purposes:The Guide to PAS 2050:20119the carbon footprint of the product they supply. In this case, it makes sense to report emissions that occur only up to the point at which the product is transferred to the buyer. It also enables footprints to be incrementally calculated and reported across a supply chain.While useful in this context, cradle-to-gate assessments lack the completeness of a full cradle-to-graveassessment, and may miss a large proportion of the impact for certain products. For example, for energy-using products, the vast majority of the overall carbon footprint will result from the electricity used in the use phase. This impact would only be included in a cradle-to-grave assessment.Source: IPCC (2007), T able 2.14; see Clause 2.7) 100-year time horizon.Note: the GWP actually used in calculations should be the latest available from the Intergovernmental Panel on Climate Change (IPCC), and you should check this periodically.Table 1: Global warming potentials and common sources of some of the most important GHGs1.Cradle to gate – which takes into account all life cycle stages from raw material extraction up to the point at which it leaves the organization undertaking the assessment.2.Cradle to grave – which takes into account all life cycle stages from raw material extraction right up to disposal at end of life.Cradle-to-gate and cradle-to-grave assessmentsCradle-to-gate assessments are commonly used where a buyer has asked a supplier to provide information onStep I: Scoping10It is vital that at least 95 per cent of the total mass and at least 95 per cent of the total anticipated impact of the final product is being assessed. Double check this during data prioritization calculations (see Step 1.4).System boundaries for services Setting system boundaries for services, in particular, can be challenging. Some guidance on doing so is provided in Annex B.The Guide to PAS2050:2011 11Table 2: Examples of high- and low-intensity materials and processesStep I: Scoping12•Emission factors : values that convert activity dataquantities into GHG emissions – based on the ‘embodied’ emissions associated with producing materials/fuels/energy, operating transport carriers,treating wastes, etc. These are usually expressed in units of ‘kg CO 2e’ (e.g. kg CO 2e per kg of orange cultivation, per litre of diesel, per km of transport or per kg of waste to landfill), and are most often from secondary sources.Choosing between primary and secondary dataCollecting primary activity data for specific activities across the supply chain can be time consuming, and so often dictates the amount of resource needed for a footprinting study. But the use of primary data generally increases the accuracy of the carbon footprint calculated, as the numbers used in the calculation relate directly to the real-life production or provision of the product or service assessed.Secondary data are usually less accurate, as they will relate to processes only similar to the one that actually takes place, or an industry average for that process.The choice between primary and secondary data should be guided by the scoping/prioritization activitiesundertaken in Step 1, as well as the underlying PAS 2050principles of:•relevance – selection of appropriate data andmethods for the specific products•completeness – inclusion of all GHG emissions andremovals arising within the system boundary that provide a material contribution13Data collectionStep 2•consistency – applying assumptions, methods anddata in the same way throughout the assessment •accuracy – reducing bias and uncertainty as far as practical•transparency – where communicating externally,provide sufficient information.In accordance with the principles of ‘relevance’ and ‘accuracy’, primary data are generally preferred.Step 2: Data collection14Note that, while the general rule is that primary data are preferred, there are some exceptions to this; for example, the case of commodity goods (see the following box).A key first task in the data collection process is toconsider primary and secondary data needs and drawup a data collection plan.Some example data collection templates, showing both generic and tailored approaches, as well as some useful tips, are provided in Annex D.The data collection template can also be used to ask for information to assess the quality of data provided. This involves a few additional questions for each data point, which will help you to ascertain how much confidence you can have in the accuracy of the data and, consequently, the accuracy of the carbon footprint. SamplingIn some cases, a product will be produced at a large number of sites. Milk in the UK, for example, is typically supplied by a large number of small/medium-sized farms, each providing an identical product (note: as suppliers are known and constant, this is differentThe Guide to PAS2050:2011 15 from a commodity good as earlier described). In thiscase, data collection for each site could be prohibitivelytime consuming, and a sampling approach is required. Annex E provides some guidance on sampling options.As with all footprinting tasks, resources should beallocated in the most efficient manner, while giving consideration to the core PAS2050 principles earlier described.Table 3: An example data collection plan for orange juice (drinks producer collecting data)Step 2: Data collection16contained in technical reports and published studies.This category also includes cradle-to-gate carbon footprint values that your suppliers might give you in response to a data request.•Disaggregated data are most often found in lifecycle inventory (LCI) databases that list all the inputs and outputs for a given process. These detail the consumption of specific raw materials/energy carriers and individual emissions, as opposed to a summary of the total CO 2e emissions.Aggregated data/emission factor sourcesT able 4 provides a list of useful sources of easilyaccessible emission factors. These are a starting point,but are by no means a definitive list of available resources.If you are using aggregated secondary data/emission factors, be careful to check that they are fit forpurpose. For example, is the system boundary used compliant with PAS 2050 boundaries? Some useful things to check are outlined in the box on page 17.Table 4: Useful sources of emission factors – some examplesDisaggregated/inventory data sourcesA list of common life cycle inventory (LCI) databases can be found at: http://lca.jrc.ec.europa.eu/ lcainfohub/databaseList.vm.Some databases are free, whereas some charge a licence fee.•An example of a licensed database is the ecoinvent LCI database found at . This is a useful source of data for over 4,000 materials andprocesses.•Examples of free databases are the European Reference Life Cycle Database (ELCD) found athttp://lca.jrc.ec.europa.eu/lcainfohub/datasetArea.vm, and US Life Cycle Inventory Database found atThe Guide to PAS2050:2011 17 /lci/database/default.asp, bothof which contain LCI datasets for selected materialsand processes.T ypically, when using LCI databases, the inventory dataare modelled in an LCA software programme, to provide emission factors (aggregated data) that can be used ina carbon footprint. However, if needed, the values for individual emissions listed in the LCI database can beused to estimate the global warming potential withoutthe use of LCA software. Tips for using LCI data in thisway are as follows:•Copying the LCI data into a spreadsheet (e.g.Microsoft Excel) might make it easier to view andinterrogate.Step 2: Data collection18retailed in London/England/Wales) can be defined within your functional unit.RetailFor the majority of products, emissions from retail operations will represent a very small part of theoverall carbon footprint. The main source of emissions will be energy use for both lighting and refrigeration.If primary data for energy use by a retail facility are not available, emissions from retail of products stored at ambient temperatures can reasonably be assumed to be comparable to those from a warehouse (see Step 3.2, heading ‘Storage emissions’, of this Guide).Refrigerated or frozen storage at retail may represent a significant source of emissions, and so should be considered in more detail. See further information on refrigeration in Step 3.2, heading ‘Refrigeration’, of this Guide.You will typically need to consider the volume of space occupied by a product, and how long it is typically stored for at the point of sale (e.g. slow-moving items must be stored for longer, and so incur greater emissions).UseA ‘use profile’ is a description of the typical way in which a product is consumed, or of the average user requirements. For example:•a use profile for product that requires cooking willrefer to the proportion of users that will typically bake, boil or microwave the product and the amount of time required in each case•a use profile for an electrical item will refer to atypical length of time the product is used for, or a typical setting (e.g. the proportion of washing machine cycles at 30/40/60 degrees).For some products, the choices made at this stage can make a significant contribution to the footprint, and introduce considerable variability, and so require careful consideration.•Identify emissions of key GHGs. As a minimum,emissions of fossil/biogenic carbon dioxide, methane and nitrous oxide should be identified, which are the predominant GHGs in the majority of instances.However , other key GHGs, such as CFCs and HCFCs,might also be included in the inventory data.•The identified GHG emissions values can thenbe multiplied by their respective global warming potential, and the results summed to derive a ‘kg CO 2e’ emission factor that can be used in your product carbon footprint calculations.•Ideally, the quantity of all key GHGs will be identified.In practice, this can be a laborious task that might only involve very minor emissions. In this case, it should be recognized that the resulting emission factor might be an underestimate, and should be clearly labelled as such in the product carbon footprint calculations.2.4. Collecting data for ‘downstream’ activitiesDistributionIn many instances you will need to collect primary data for product distribution, if under your operational control.Distribution typically comprises transportation to a retail market and a period of storage in a distribution centre or warehouse. Specific data needs and emissions calculations for these activities are discussed in Step 3.2,headings ‘Refrigeration’ and ‘Storage emissions’, of this Guide.Whether this distribution step represents an average geography (e.g. products retailed in the UK, orEurope – taking a weighted average based on sales in different locations) or specific region (e.g. productsThe Guide to PAS2050:2011 19be assessed against the principles of PAS 2050 is presented in Annex F . Note that this example outlines only one of the ways in which you could undertake a semi-quantitative assessment to flag areas of uncertainty (and potential need for data improvement).The best-quality data should always be sought in an assessment, but is of particular importance where external communication is an ultimate goal of the study. In this case, a full data quality assessment,Step 2: Data collection20along with any accompanying assumptions or calculations, should be recorded with the product carbon footprint calculations.For internal assessments (e.g. to identify hotspots in the value chain), formal assessment/recording may not be needed, but you should ensure that differences in data quality are not unduly influencing the findings of your study (see Step 4 of this Guide for further discussionon this).Consider the examples for orange juice (Figure 3 and T able 5, and Figure 4 and T able 6), which show calculations for the first two life cycle stages.Activity data are often collected in many different formats and relating to different units (e.g. inputs and outputs for a tonne of raw material produced, or a year’s worth of production, or a hectare’s worth of production). An important next step is to balance the flows shown in21Footprint calculationsStep 3Step 3: Footprint calculations22HGV , heavy goods vehicle.aThe emissions from fertilizers and pesticides are dictated by their content of minerals or active ingredients (e.g. the proportion of fertilizer that is nitrogen or the proportion of pesticide that is anthraquinone) not the total weight.However, transport of the fertilizer or pesticide to use should be calculated based on the total weight.Figure 3: Mapping activity data – cultivation of oranges for the production of orange juiceTable 5: Example – 1hectare of orange cultivationThe Guide to PAS 2050:2011 23Table 6: Example – to produce 1tonne of concentrateFigure 4: Mapping activity data – processing of oranges for the production of orange juicethe process map so that all inputs and outputs reflect the provision of the functional unit/reference flow defined in Step 1. This can be either done within the process map itself, or in an Excel spreadsheet or other software tool.This can be the most difficult part of the calculation process. Golden rules are to:•always consider waste in the process•make calculations as transparent as possible, sothey can be traced backwards•record all assumptions and data concerns.Once the flows are balanced to reflect the functional unit, the calculation process is simple.Remember that some flows might be negative, where there are biogenic carbon removals (see Step 3.2,Step 3: Footprint calculations24heading ‘Biogenic carbon accounting and carbon storage’, and Annex H of this Guide).A simplified example for orange juice is shown inT able 7. Specific calculation aspects, such as transport,refrigerant or waste management are also discussed later in this section.The Guide to PAS2050:2011 25 Table 7: Footprint calculations for the production of a 1litre carton of orange juice (example data only)(Continued)(Continued)Table 7: Footprint calculations for the production of a 1litre carton of orange juice (example data only) (continued)Making simplifying assumptionsIt is often possible to use simplifications or estimations to streamline the carbon footprinting process. For example:•grouping all cleaning chemicals and using a generic ‘chemicals’ emission factor, estimating the quantities used•assigning a set of general assumptions for transport– e.g. 50km to waste treatment, 200km for inputs from the UK and 1,000km from central Europe.When making any simplifying assumptions it is important to make them conservative/worst case, and make sure that you record them and are able to change them if needed.In the calculation step of the footprint, it is a good idea to check and confirm that these simplified inputs or activities are not significant contributors to the footprint (e.g. >5 per cent of the footprint). If they are, you may need to go back and collect more specific information.As discussed in Step 2.5 of this Guide, the best quality (and specific) data should always be sought in anassessment, but is of particular importance whereexternal communication is an ultimate goal of the study.For both external and internal assessments, it is most important to ensure that differences in data quality are not unduly influencing the findings of your study (discussed further in Step 4 of this Guide).Co-product allocationSome processes in the life cycle of a product may yield more than one useful output (‘co-products’). For example, in the life cycle of orange juice above,the juicing of oranges yields not only orange juice but also a large volume of pulp (a low-value co-product that can be used as an animal feed) and a small amount of peel oil (a high-value essential oil that can be used as a fragrance in perfumes or household cleaners).In these cases, the input and output flows, or emissions,of the process (juicing) must be split, or ‘allocated’between the product being studied (the juice) and any co-products (the pulp and peel oil).aThis is the global warming potential (GWP) of N 2O gas – not an emission factor. The gas is released directly, and so does not need multiplying by an emission factor. It does, however need to be multiplied by its GWP of 298 to translate into CO 2equivalents (CO 2e).bLand-spreading – this is put to useful purpose, and so is a co-product, albeit with minimal value. A simple approach is to allocate this co-product zero emissions, as its relative value is very small (see Step 3.1, heading ‘Co-product allocation’, of this Guide).cThese values include removals and emissions of biogenic carbon within the packaging material. See Step 3.2,heading ‘Biogenic carbon accounting and carbon storage’, of this Guide.Table 7: Footprint calculations for the production of a 1litre carton of orange juice (example data only)(continued)。
一、背景气候变化是21世纪人类面对的重要挑战。
为此,各国积极地采取了行动,哥本哈根的联合国气候谈判会议虽没有取得预期的谈判结果,但值得欣慰的是形成了全球气温升高控制在2℃以内的科学论断,并承诺各国将“遵循科学,在公平的基础上实现减排目标”。
我国也积极采取措施推进节能减排工作,制定相关政策,并承诺在2020年将单位GDP的碳排放强度比2005年降低40~45%。
2007年我国制定了《国家应对气候变化方案》,欧盟、美国、日本和澳大利亚等也制定了相关的政策。
随着各国应对气候变化工作的进一步深入,企业作为节能减排政策的具体实施主体,对其产品或服务进行碳足迹评价自然而然地被推至风口浪尖,成为了全球关注的一个热点问题。
这主要是因为:气候变化问题催生出的绿色商业模式正在成为国际的主流。
近几年,随着“低碳”概念在各国推广,越来越多的国家和企业选择了自愿在产品上标注出“碳足迹”(如英国、德国、日本、韩国等的碳标识);一些连锁商店的采购商通过绿色供应链强制要求供应商对其产品进行碳足迹评价并做出标识。
长此以往,碳标识极有可能成为新的绿色贸易壁垒。
消费者选择意愿的改变正在影响商业格局,绿色消费的理念正在逐步形成。
因此,积极履行社会责任、采取绿色经营的企业在提升企业知名度、寻求商机等方面存在广阔的发展前景。
社会舆论要求企业减排的压力越来越大。
公众、行业协会、上下游企业、环保NGO组织、投资方、媒体等利益相关方,对气候变化的关注度越来越大,他们通过各种方式直接或间接地影响政策制定、司法实践、行业标准的制/修订、消费者习惯的改变,迫使企业履行社会责任,采取实际行动减少温室气体的排放。
二、碳足迹评价的国内外发展现状产品/服务的碳足迹是指某个产品/服务在其整个生命周期内各种温室气体排放,即从原材料获取、生产(或提供服务)、分销、使用直至废弃物的处置/再生利用等所有阶段的温室气体排放。
其范畴包括二氧化碳(CO2)、甲烷(CH4)、氮氧化物(N2O)、氢氟碳化物(HFC)、全氟化物(PFC)和六氟化硫(S F6)。
一、背景气候变化是21世纪人类面对的重要挑战。
为此,各国积极地采取了行动,哥本哈根的联合国气候谈判会议虽没有取得预期的谈判结果,但值得欣慰的是形成了全球气温升高控制在2℃以内的科学论断,并承诺各国将“遵循科学,在公平的基础上实现减排目标”。
我国也积极采取措施推进节能减排工作,制定相关政策,并承诺在2020年将单位GDP的碳排放强度比2005年降低40~45%。
2007年我国制定了《国家应对气候变化方案》,欧盟、美国、日本和澳大利亚等也制定了相关的政策。
随着各国应对气候变化工作的进一步深入,企业作为节能减排政策的具体实施主体,对其产品或服务进行碳足迹评价自然而然地被推至风口浪尖,成为了全球关注的一个热点问题。
这主要是因为:气候变化问题催生出的绿色商业模式正在成为国际的主流。
近几年,随着“低碳”概念在各国推广,越来越多的国家和企业选择了自愿在产品上标注出“碳足迹”(如英国、德国、日本、韩国等的碳标识);一些连锁商店的采购商通过绿色供应链强制要求供应商对其产品进行碳足迹评价并做出标识。
长此以往,碳标识极有可能成为新的绿色贸易壁垒。
消费者选择意愿的改变正在影响商业格局,绿色消费的理念正在逐步形成。
因此,积极履行社会责任、采取绿色经营的企业在提升企业知名度、寻求商机等方面存在广阔的发展前景。
社会舆论要求企业减排的压力越来越大。
公众、行业协会、上下游企业、环保NGO组织、投资方、媒体等利益相关方,对气候变化的关注度越来越大,他们通过各种方式直接或间接地影响政策制定、司法实践、行业标准的制/修订、消费者习惯的改变,迫使企业履行社会责任,采取实际行动减少温室气体的排放。
二、碳足迹评价的国内外发展现状产品/服务的碳足迹是指某个产品/服务在其整个生命周期内各种温室气体排放,即从原材料获取、生产(或提供服务)、分销、使用直至废弃物的处置/再生利用等所有阶段的温室气体排放。
其范畴包括二氧化碳(CO2)、甲烷(CH4)、氮氧化物(N2O)、氢氟碳化物(HFC)、全氟化物(PFC)和六氟化硫(SF6)。
2008年10月,英国标准协会(BSI)、碳基金(Carbon Trust)和英国环境、食品与农村事务部(Defra)联合发布了世界上针对产品和服务的碳排放评价的第一个方法学规范PAS 2050:2008,即《关于产品和服务在生命周期内温室气体排放的评估规范》,企业可利用该规范对其产品/服务在整个生命周期内的碳足迹进行评价,并在评价后加贴碳标识。
该规范的宗旨是帮助企业在管理自身生产过程中所形成的温室气体排放的同时,寻找在产品设计、生产和供应等过程中降低温室气体排放的可能,以帮助企业降低产品或服务的二氧化碳排放量,最终开发出更低碳足迹的新产品。
在英国,包括百事可乐(PepsiCo)、博姿(B oots)、Innocent、马绍尔(Marshalls)、特易购(Tesco)、吉百利(Cadbury)、哈利法克斯(Halifax)等在内的多家企业已根据PAS 2050完成了产品/服务的碳足迹评价。
2007年3月,英国推出了碳标识,2008年10月变更为图1所示图形。
此外,图1 中还列出了中国台湾地区、加拿大和韩国推出的碳标识。
我国也正在积极研究碳足迹评价的方法学和相关标准,目前尚未有具体何时推出的时间表。
各国使用的碳标识都是自愿性的,以碳信息披露为主,产品/服务碳足迹评价是基于生命周期理论或相对成熟的方法学(如PAS 2050),涉及的产品主要包括食品、生活用品、电子产品及元器件和耗能产品等。
此外,大多数的碳标识以政府推动为主,由政府机构或政府委托外部机构进行管理,也有个别国家是由民间和市场推动的。
三、PAS 2050进行碳足迹评价的程序1、选择产品企业进行产品的碳足迹评价分析,首先需要选择产品,应考虑以下因素:哪些产品可能产生最大的温室气体减排?哪些与公司的温室气体减排战略最为相关?从竞争的角度看哪些产品最重要?哪些品牌/产品最具有减排和市场营销的潜力?供应商是否愿意参与?碳足迹分析可能对关键的利益相关方产生什么影响?有多少时间和资源可用于碳足迹分析?2、确定功能单位在选择产品后,最重要的事情是确定功能单位。
一个功能单位实际上是反映了产品被最终用户实际消费的方式。
如250 ml的软饮料,1000小时的灯光照明,一个晚上的酒店住宿等等。
为了进行计算,功能单位可以被认为是某一特定产品的一个有意义的数量。
在确定功能单位时,一定要考虑如下几个问题:客户认为他们所购买的是什么?什么数量的服务具有代表性?公司想用什么来进行碳足迹比较?客户可能想用什么来进行比较?3、供应商的参与产品的碳足迹评价在数据收集时要考虑很多相关的碳信息,如谁是主要的供应商、零售商、废物管理公司等,它们可以提供什么信息?它们如何愿意或支持该项目,如对于要求他们提供的信息是否存在商业敏感性?谁将为这种关系承担责任?4、绘制过程图根据产品或服务的种类不同,有两种碳足迹评价模式,一种是从商业到消费者(B2C)评价:包括从原材料,通过制造、分销和零售,到消费者使用,以及最终处置或再生利用整个过程的排放。
另一种是从商业到商业(B2B)评价:B2B的碳足迹停留在该产品被提供给另一个制造商的节点上。
即只包括从原材料生产直到到达一个新的组织(包括分销和运输到客户所在地)产生的碳排放,而不包括额外的生产步骤、最终产品的分销、零售、消费者使用以及处置/再生利用产生的碳排放。
5、确定系统边界确定系统边界就是要确定产品碳足迹评价的范围,即哪些生命周期阶段应该包含在评价范围内,哪些输入和输出应该包含在评价范围内。
在确定系统边界时应遵循将产品单元中所有的实质性排放包含在内的总体原则。
而对于边界内非实质性排放源(不足碳足迹总量的1%)、输入过程的人力、消费者到零售点的交通和动物提供的运输不予考虑。
确定系统边界的同时,应在估值和预测确定各个排放源的实质性后,对所有实质性的排放源根据其排放量的大小确定一个优先次序,对那些排放量大的源要重点关注。
6、数据的收集为了计算产品的碳足迹,必须考虑活动水平数据、排放因子数据和全球增温潜势(GWP)。
活动水平数据是指产品在生命周期中的所有的量化数据(包括物质的输入、输出;能量使用;交通等方面)。
排放因子数据是指单位活动水平数据排放的温室气体数量。
利用排放因子数据,可以将活动水平数据转化为温室气体排放量。
如:电力的排放因子可表示为:CO2e / kWh,燃油的排放因子可表示为:CO2e /升燃料。
全球增温潜势是将单位质量的某种温室效应气体(GHG)在给定时间段内辐射强度的影响与等量二氧化碳辐射强度影响相关联的系数,如CH4(甲烷)的GWP值是21。
7、碳足迹的计算产品的碳足迹为所有排放源的活动水平数据与其排放因子乘积之和。
排放源1:AD1 ×EF1 = CF1,排放源2:AD2×EF2 = CF2...排放源n:ADn×EFn = CFn其中,AD:活动水平数据,单位为质量、体积或能量单位等;EF:排放因子,每个功能单位的CO2当量;CF:碳足迹,每个产品系统中的CO2e当量总数。
8、分配问题产品的生产过程中有共生产品的情况下,必须对GHG的排放进行分配。
在对副产品进行GHG排放分配时应按如下顺序使用分配方法:(1) 将生产过程细分为若干子过程,每个子过程只有一项输出,然后根据质量输入或能量输入的比例对各个子过程的温室气体排放进行分配。
(2) 如果上述分配方法不可行,则该过程产生的GHG排放应按共生产品的经济价值比例在共生产品之间进行分配。
9、不确定性分析进行产品碳足迹评价的不确定性分析可使产品间的比较结果及使决策具有更高的可信度;判定数据收集的重点和非重点是否准确;以及可以更好地认识碳足迹模型;如果通报结果,不确定性分析还可向内部和外部读者提供有关碳足迹的确凿性信息。
通常不确定性来自供应链中某些数据的缺失和数据质量存在问题,如:不是特定的数据、数据来源不可靠等等。
10、编写报告产品/服务碳足迹评价报告内容包括碳足迹评价结果外,还包括如下内容:产品介绍;系统边界;运行边界;内部数据收集系统说明;假定、排除及解释;其他支持信息(方法学、温室气体排放种类、不确定性分析和联系人等)。
碳足迹评价报告要求尽量确保完整性、一致性、相关性和透明性。
四、PAS 2050进行碳足迹评价信息的使用企业进行产品碳足迹评价的直接目标大体上可分为两大类:(1) 用于企业内部的评估,确定温室气体排放的“热点”,以便于采取措施有效降低产品的碳排放;(2) 用于向公众或其它第三方公布其产品的碳足迹信息。
企业目标的不同,则评价过程的详尽程度和结果的准确程度都可能会有较大的差别。
通常情况下,目标为第一种时,可不必将结果交由第三方认证机构对结果进行核查;但目标为第二种时,必须要将结果交由第三方认证机构对结果的准确性进行仔细核实。
五、中国标准化研究院在碳足迹评价方面开展的工作碳标识的信息是根据相关的标准和方法学进行产品/服务的碳足迹评价后核查确定,可见碳足迹评价工作的核心是方法学和标准。
中国标准化研究院是国际标准化组织ISO/TC 20 7、全国环境标准化技术委员会及其温室气体管理标准化分技术委员会(SC 7)秘书处承担单位,从事了大量相关标准化工作,参与温室气体管理相关国际标准的起草。
此外,还及时将PAS 2050 引入国内并编译成中文版。
在标准的推广和应用方面也开展了大量的工作,已经为石油、化工、水泥、酿造、纺织和加工制造等行业提供温室气体清单核算和产品碳足迹评价服务工作,开发出一系列的数学模型和工具,具有比较成熟的思路和方法。
六、小结按照PAS 2050,企业可以在专业人员的指导下进行产品/服务的碳足迹评价,获取可靠的单位产品/服务的碳排放信息。
在帮助企业有效应对绿色贸易壁垒的同时,有利于企业真正认识到产品碳排放方面的影响,并采取行动来降低整个供应链中的温室气体的排放量,也可以为公众如何进行低碳产品/服务的选择、使用和处理提供建议。