【精英新课堂】2016春九年级数学下册 1.2 30°,45°,60°角的三角函数值课件 (新版)北师大版
- 格式:ppt
- 大小:1.78 MB
- 文档页数:21
30°,45°,60°角的三角函数值考点一:特殊角(30°,45°,60°)的三角函数值 【例题】1、sin30°的值是 ( ) A .1 BCD .122、下列各式正确的是( )A. cos600<sin450<tan450B. sin450<cos600<tan450C. cos600<tan450<sin450D. tan450<cos600<sin4503sin45°的结果等于( )(B)1 (C) (D)【练习】1、2cos60︒的值等于【 】(A ) 1 (B (C (D )22、sin45°的值等于 (A)12(B)(C)(D) 13、点(-sin60°,cos60°)关于y 轴对称的点的坐标是( ) A .,12) B .(,12) C .(-12) D .(-12,-32) 4、sin60°=( ) A .21B .22C .1D .235、2sin60°的值等于( ) A .1 B .C .D .2336、sin60°的相反数是( )。
A .21- B .33- C .23- D .22-考点二:由特殊三角函数值求角【例题】12已知锐角α满足2sin(α+20°)=1,则锐角α的度数为 ( ) A .10° B.25° C.40° D.45° 2、已知α为锐角,sin (α﹣20°)=( ) A .20° B .40°C .60°D .80°3、若0°<α<90°,且4sin 2α﹣3=0,则α等于( ) A.30° B.45° C.60° D.90°【练习】1、等腰三角形的一腰长为cm 6,底边长为cm 36,则其底角为 A.030 B.060 C.090 D.01202、已知0°<α<90°,当α=__________3、在△ABC 中,若1|sin ||cos |022A B -+-=,则C ∠=_______ 4、Rt ΔABC 中,∠C=900,sinA 和В是关于x 的方程kx 2-kx+1=0的两个根,求∠B 的度数.考点三:三角函数值计算 【例题】1、计算:tan45°+sin30°=( )(A )2 (B ) (C ) (D )2、计算5sin30°+2cos 245°-tan 260°的值是( )B.12C.-12D.1 3、计算:tan60°+2sin45°﹣2cos30°的结果是( )A .2B .C .D .1【练习】1、计算sin 245°+cos30°•tan60°,其结果是( ) A .2 B .1 C . D .cos 232+23231+2、2cos30°+12sin30°-tan60°·sin60°=( )A 、52 B 、12- C 、14- D3、4cos30°sin60°= .4、先化简,再求值:(1-11+a )÷122++a a a ,其中a =sin60°. 5、先化简,再求值:)2522(422---+÷-+x x x x x ,其中x =2sin60°+1.。
1.2 30°,45°,60°角的三角函数值1.经历探索30°,45°,60°角的三角函数值的过程,进一步体会三角函数的意义;(重点)2.能够进行30°,45°,60°角的三角函数值的计算;(重点)3.能够根据30°,45°,60°角的三角函数值说出相应锐角的大小.(难点)一、情境导入在直角三角形中(利用一副三角板进行演示),如果有一个锐角是30°(如图①),那么另一个锐角是多少度?三条边之间有什么关系?如果有一个锐角是45°呢(如图②)?由此你能发现这些特殊锐角的三角函数值吗?二、合作探究探究点一:30°,45°,60°角的三角函数值【类型一】 利用特殊角的三角函数值进行计算计算: (1)2cos60°·sin30°- 6sin45°·sin60°;(2)sin30°-sin45°cos60°+cos45°. 解析:将特殊角的三角函数值代入求解.解:(1)原式=2×12×12-6×22×32=12-32=-1;(2)原式=12-2212+22=22-3. 方法总结:解决此类题目的关键是熟记特殊角的三角函数值.变式训练:见《学练优》本课时练习“课堂达标训练” 第5题 【类型二】 已知三角函数值求角的取值范围 若cos α=23,则锐角α的大致范围是( ) A .0°<α<30° B .30°<α<45° C .45°<α<60° D .0°<α<30° 解析:∵cos30°=32,cos45°=22,cos60°=12,且12<23<22,∴cos60°<cos α<cos45°,∴锐角α的范围是45°<α<60°.故选C. 方法总结:解决此类问题要熟记特殊角的三角函数值和三角函数的增减性. 变式训练:见《学练优》本课时练习“课堂达标训练” 第9题【类型三】 已知三角函数值,求角度根据下列条件,确定锐角α的值:(1)cos(α+10°)-32=0; (2)tan 2α-(33+1)tan α+33=0. 解析:(1)根据特殊角的三角函数值来求α的值;(2)用因式分解法解关于tan α的一元二次方程即可.解:(1)cos(α+10°)=32,α+10°=30°,∴α=20°;(2)tan 2α-(33+1)tan α+33=0,(tan α-1)(tan α-33)=0,tan α=1或tan α=33,∴α=45°或α=30°. 方法总结:熟记特殊角的三角函数值以及将“tan α”看作一个未知数解方程是解决问题的关键.变式训练:见《学练优》本课时练习“课后巩固提升” 第8题探究点二:特殊角的三角函数值的应用 【类型一】 特殊角的三角函数值与其他知识的综合已知△ABC 中的∠A 与∠B 满足(1-tan A )2+|sin B -32|=0,试判断△ABC 的形状.解析:根据非负性的性质求出tan A 及sin B 的值,再根据特殊角的三角函数值求出∠A 及∠B 的度数,进而可得出结论.解:∵(1-tan A )2+|sin B -32|=0,∴tan A =1,sin B =32,∴∠A =45°,∠B =60°,∠C =180°-45°-60°=75°,∴△ABC 是锐角三角形.方法总结:一个数的绝对值和偶次方都是非负数,当几个数或式的绝对值或偶次方相加和为0时,则其中的每一项都必须等于0.变式训练:见《学练优》本课时练习“课后巩固提升”第4题【类型二】 利用特殊角的三角函数值求三角形的边长如图所示,在△ABC 中,∠C =90°,∠B =30°,AD 是△ABC 的角平分线,若AC =3,求线段AD 的长.解析:首先根据直角三角形的性质推出∠BAC 的度数,再求出∠CAD =30°,最后根据特殊角的三角函数值求出AD 的长度. 解:∵△ABC 中,∠C =90°,∠B =30°,∴∠BAC =60°.∵AD 是△ABC 的角平分线,∴∠CAD =30°,∴在Rt △ADC中,AD =AC cos30°=3×23=2.方法总结:解决此题的关键是利用转化的思想,将已知和未知元素化归到一个直角三角形中,进行解答.变式训练:见《学练优》本课时练习“课后巩固提升”第9题【类型三】构造三角函数模型解决问题要求tan30°的值,可构造如图所示的直角三角形进行计算.作Rt △ABC ,使∠C =90°,斜边AB =2,直角边AC =1,那么BC =3,∠ABC =30°,∴tan30°=AC BC =13=33.在此图的基础上,通过添加适当的辅助线,探究tan15°与tan75°的值.解析:根据角平分线的性质以及勾股定理首先求出CD 的长,进而得出tan15°=CDBC,tan75°=BC CD.解:作∠B 的平分线交AC 于点D ,作DE ⊥AB ,垂足为E .∵BD 平分∠ABC ,CD ⊥BC ,DE ⊥AB ,∴CD =DE .设CD =x ,则AD =1-x ,AE =2-BE =2-BC =2- 3.在Rt △ADE 中,DE 2+AE 2=AD 2,x 2+(2-3)2=(1-x )2,解得x =23-3,∴tan15°=23-33=2-3,tan75°=BC CD =323-3=2+ 3.方法总结:解决问题的关键是添加辅助线构造含有15°和75°的直角三角形,再根据三角函数的定义求出15°和75°的三角函数值.变式训练:见《学练优》本课时练习“课后巩固提升”第6题三、板书设计 30°,45°,60°角的三角函数值2.应用特殊角的三角函数值解决问题课程设计中引入非常直接,由三角板引入,直击课题,同时也对前两节学习的知识进行了整体的复习,效果很好.设计引题开门见山,节省了时间,为后面的教学提供了方便.在讲解特殊角三角函数值时也很细,可以说前部分的教学很成功,学生理解的很好.。
1.2 30°,45°,60°角的三角函数值学习目标:1.经历探索30°、45°、60°角的三角函数值的过程,能够进行有关的推理.进一步体会三角函数的意义.2.能够进行30°、45°、60°角的三角函数值的计算.3.能够根据30°、45°、60°的三角函数值说明相应的锐角的大小.学习重点:1.探索30°、45°、60°角的三角函数值.2.能够进行含30°、45°、60°角的三角函数值的计算.3.比较锐角三角函数值的大小.学习难点:进一步体会三角函数的意义.学习方法:自主探索法学习过程:一、问题引入[问题]为了测量一棵大树的高度,准备了如下测量工具:①含30°和60°两个锐角的三角尺;②皮尺.请你设计一个测量方案,能测出一棵大树的高度.二、新课[问题] 1、观察一副三角尺,其中有几个锐角?它们分别等于多少度?[问题] 2、sin30°等于多少呢?你是怎样得到的?与同伴交流.[问题] 3、cos30°等于多少?tan30°呢?[问题] 4、我们求出了30°角的三个三角函数值,还有两个特殊角——45°、60°,它们的三角函数值分别是多少?你是如何得到的?结论:[例1]计算:(1)sin30°+cos45°; (2)sin 260°+cos 260°-tan45°. [例2]一个小孩荡秋千,秋千链子的长度为2.5 m ,当秋千向两边摆动时,摆角恰好为60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差.(结果精确到0.01 m) 三、随堂练习 1.计算:(1)sin60°-tan45°; (2)cos60°+tan60°; (3)22sin45°+sin60°-2cos45°; ⑷13230sin 1+-︒;⑸(2+1)-1+2sin30°-8; ⑹(1+2)0-|1-sin30°|1+(21)-1; ⑺sin60°+︒-60tan 11; ⑻2-3-(0032+π)0-cos60°-211-.2.某商场有一自动扶梯,其倾斜角为30°.高为7 m ,扶梯的长度是多少?3.如图为住宅区内的两幢楼,它们的高AB =CD=30 m ,两楼问的距离AC=24 m ,现需了解甲楼对乙楼的采光影响情况.当太阳光与水平线的夹角为30°时,求甲楼的影子在乙楼上有多高?(精确到0.1 m ,2≈1.41,3≈1.73)四、课后练习:1、Rt △ABC 中,8,60=︒=∠c A ,则__________,==b a ;2、在△ABC 中,若2,32==b c ,,则____tan =B ,面积S = ;3、在△ABC 中,AC :BC =1:3,AB =6,∠B = ,AC = BC =4、等腰三角形底边与底边上的高的比是3:2,则顶角为 ( ) (A )600 (B )900 (C )1200 (D )15005、有一个角是︒30的直角三角形,斜边为cm 1,则斜边上的高为 ( )(A )cm 41 (B )cm 21(C )cm 43 (D )cm 23 6、在ABC ∆中,︒=∠90C ,若A B ∠=∠2,则tanA 等于( ). (A )3 (B )33 (C )23 (D )217、如果∠a 是等边三角形的一个内角,那么cosa 的值等于( ).(A )21 (B )22(C )23 (D )18、某市在“旧城改造”中计划内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米a 元,则购买这种草皮至少要( ). (A )450a 元 (B )225a 元 (C )150a 元 (D )300a 元 9、计算:⑴、︒+︒60cos 60sin 22 ⑵、︒︒-︒30cos 30sin 260sin ⑶、︒-︒45cos 30sin 2 ⑷、3245cos 2-+︒⑸、045cos 360sin 2+ ⑹、 130sin 560cos 30- ⑺、︒30sin 22·︒+︒60cos 30tan tan60° ⑻、︒-︒30tan 45sin 22 10、请设计一种方案计算tan15°的值。
§1.2 30°、45°、60°角的三角函数值学习目标:1.经历探索30°、45°、60°角的三角函数值的过程,能够进行有关的推理.进一步体会三角函数的意义.2.能够进行30°、45°、60°角的三角函数值的计算.3.能够根据30°、45°、60°的三角函数值说明相应的锐角的大小.学习重点:1.探索30°、45°、60°角的三角函数值.2.能够进行含30°、45°、60°角的三角函数值的计算.3.比较锐角三角函数值的大小.学习难点:进一步体会三角函数的意义.学习方法:自主探索法学习过程:一、问题引入[问题]为了测量一棵大树的高度,准备了如下测量工具:①含30°和60°两个锐角的三角尺;②皮尺.请你设计一个测量方案,能测出一棵大树的高度.二、新课[问题] 1、观察一副三角尺,其中有几个锐角?它们分别等于多少度?[问题] 2、sin30°等于多少呢?你是怎样得到的?与同伴交流.[问题] 3、cos30°等于多少?tan30°呢?[问题] 4、我们求出了30°角的三个三角函数值,还有两个特殊角——45°、60°,它们的三角函数值分别是多少?你是如何得到的?(1)sin30°+cos45°; (2)sin260°+cos260°-tan45°.[例2]一个小孩荡秋千,秋千链子的长度为2.5 m,当秋千向两边摆动时,摆角恰好为60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差.(结果精确到0.01 m)三、随堂练习1.计算:(1)sin60°-tan45°; (2)cos60°+tan60°;(3) sin45°+sin60°-2cos45°;⑷;⑸(+1)-1+2sin30°-;⑹(1+)0-|1-sin30°|1+()-1;⑺sin60°+;⑻2-3-(+π)0-cos60°-.2.某商场有一自动扶梯,其倾斜角为30°.高为7 m,扶梯的长度是多少?3.如图为住宅区内的两幢楼,它们的高AB=CD=30 m,两楼问的距离AC=24 m,现需了解甲楼对乙楼的采光影响情况.当太阳光与水平线的夹角为30°时,求甲楼的影子在乙楼上有多高?(精确到0.1 m,≈1.41,≈1.73)四、课后练习:1、Rt△ABC中,,则;2、在△ABC中,若,,则,面积S=;3、在△ABC中,AC:BC=1:,AB=6,∠B=,AC=BC=4、等腰三角形底边与底边上的高的比是,则顶角为()(A)600(B)900(C)1200(D)15005、有一个角是的直角三角形,斜边为,则斜边上的高为()(A)(B)(C)(D)6、在中,,若,则tanA等于().(A)(B)(C)(D)7、如果∠a是等边三角形的一个内角,那么cos a的值等于().(A)(B)(C)(D)18、某市在“旧城改造”中计划内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米a元,则购买这种草皮至少要().(A)450a元(B)225a元(C)150a元(D)300a元9、计算:⑴、⑵、⑶、⑷、⑸、⑹、⑺、·tan60°⑻、10、请设计一种方案计算tan15°的值。