纯晶体凝固与晶体长大 知识点解释
- 格式:docx
- 大小:16.21 KB
- 文档页数:1
第6章单组元相图及纯晶体的凝固6.1 复习笔记一、单元系相变的热力学及相平衡1.相平衡条件和相律组元:组成一个体系的基本单元,如单质(元素)和稳定化合物,称为组元。
相:体系中具有相同物理与化学性质的且与其他部分以界面分开的均匀部分,称为相。
相律:F=C-P+2;式中,F为体系的自由度数,它是指不影响体系平衡状态的独立可变参数(如温度、压力、浓度等)的数目;C为体系的组元数;P为相数。
常压下,F=C-P+1。
2.单元系相图单元系相图是通过几何图像描述由单一组元构成的体系在不同温度和压条件下可能存在的相及多相的平衡。
图6-1 水的相图图6-2 Fe在温度下的同素异构转变上述相图中的曲线所表示的是两相平衡时温度和压力的定量关系,可由克劳修斯(Clausius)一克拉珀龙(Clapeyron)方程决定,即式中,为相变潜热;为摩尔体积变化;T是两相平衡温度。
有些物质在稳定相形成前,先行成自由能较稳定相高地亚稳定相。
二、纯晶体的凝固1.液态结构(1)液体中原子间的平均距离比固体中略大;(2)液体中原子的配位数比密排结构晶体的配位数减小;(3)液态结构的最重要特征是原子排列为长程无序,短程有序,存在结构起伏。
2.晶体凝固的热力学条件(6.1)式中,,是熔点T m与实际凝固温度T之差;L m是熔化热。
晶体凝固的热力学条件表明,实际凝固温度应低于熔点T m,即需要有过冷度△T。
3.形核晶体的凝固是通过形核与长大两个过程进行的,形核方式可以分为两类:均匀形核和非均匀形核。
(1)均匀形核①晶核形成时的能量变化和临界晶核新相晶核是在母相中均匀地生成的,即晶核由液相中的一些原子团直接形成,不受杂质粒子或外表面的影响假定晶胚为球形,半径为r,当过冷液中出现一个晶胚时,总的自由能变化:(6.2)由,可得晶核临界半径:(6.3)代入公式(1),可得:(6.4)由式可知,过冷度△T越大,临界半径则越小,则形核的几率越大,晶核数目增多。
凝固1.凝固:是指物质有液态至固态的转变。
2.结晶:凝固后的固体是晶体,则称之为结晶。
3.近程有序:在非晶态结构中,原子排列没有规律周期性,原子排列从总体上是无规则的,但是,近邻的原子排列是有一定的规律的这就是“短程有序”4.结构起伏:液态结构的原子排列为长程无序,短程有序,并且短程有序原子团不是固定不变的,它是此消彼长,瞬息万变,尺寸不稳定的结构,这种现象称为结构起伏。
5.能量起伏:是指体系中每个微小体积所实际具有的能量,会偏离体系平均能量水平而瞬时涨落的现象。
6.过冷度:相变过程中冷却到相变点以下某个温度后发生转变,平衡相变温度与该实际转变温度之差称过冷度。
7.均匀形核:新相晶核是在母相中存在均匀地生长的,即晶核由液相中的一些原子团直接形成,不受杂质粒子或外表面的影响。
8.非均匀形核:新相优先在母相中存在的异质处形核,即依附于液相中的杂质或外来表面形核。
9.晶胚:当温度降到熔点以下,在液相中时聚时散的短程有序原子集团,就有可能形成均匀形核的“胚芽”或称晶胚。
10.晶核:物质结晶时的生长中心.又称晶芽.11.亚稳相:亚稳相指的是热力学上不能稳定存在,但在快速冷却成加热过程中,由于热力学能垒或动力学的因素造成其未能转变为稳定相而暂时稳定存在的一种相。
12.临界晶粒:半径为*r的晶核称为临界晶核。
13.临界形核功:形成临界形核所需要的功。
14.光滑界面:界面的平衡结构应是只有少数几个原子位置被占据,或者极大部分原子位置都被固相原子占据,及界面基本上为完整平面,这时界面呈光滑界面。
15.粗糙界面:界面的平衡结构约有一半的原子被固相原子占据而另一半位置空着,这是的界面称为微观粗糙界面。
16.温度梯度:是指液相温度随离液-固界面的距离增大而增大或降低。
17.平面状:在正温度梯度下,纯晶体凝固时,粗糙界面的晶体其生长形态呈平面状,界面与相面等温而平行。
18.树枝状:在负温度梯度下,纯晶体凝固时,处于温度更低的液相中,是凸出的部分的生长速度增大而进一步伸向液体中,这种情况下液-固界面会形成许多伸向液体的分支的生长方式。
内容提要由一种元素或化合物构成的晶体称为单组元晶体或纯晶体,该体系称为单元系。
某组元由液相至固相的转变称为凝固。
如果凝固后的固体是晶体,则凝固又称为结晶。
研究纯晶体的凝固,首先必须了解晶体凝固的热力学条件。
在恒压条件下,晶体凝固的热力学条件是需要过冷度,即实际凝固温度应低于熔点T m。
晶体的凝固经历了形核与长大两个过程。
形核又分为均匀形核与非均匀(异质)形核。
对于均匀形核,当过冷液体中出现晶胚时,一方面,体系的体积自由能下降,这是结晶的驱动力;另一方面,由于晶胚构成新的表面而增强了表面自由能,这成为结晶的阻力。
综合驱动力和阻力的作用,可导出晶核的临界半径r*,其物理意义是,当半径小于r*的晶胚是不稳定的,不能自发长大,最终熔化而消失,而半径等于或大于r*的晶胚可以自发长大成为晶核。
临界半径对应的自由能称为形核功。
理论推导表明,是大于零的,其值等于表面能的三分之一,因此,这部分的能量必须依靠液相中存在的能量起伏来提供。
综合所述可知,结晶条件需要过冷度、结构起伏(出现半径大于r*的晶胚)和能量起伏。
在研究结晶问题时,形核率是一个重要的参数,它涉及到凝固后的晶粒的大小,而晶粒尺寸对材料的性能有重要影响。
形核率受两个因素控制,即形核功因子核和扩散几率因子。
对纯金属均匀形核研究发现,有效形核温度约在0.2T m,表明均匀形核所需的过冷度很大。
而纯金属在实际凝固中,所需过冷度却很小,其原因是实际凝固是非均匀(异质)形核。
异质基底通常可有效地降低单位体积的表面能,从而降低形核功,这种异质基底的催化作用使非均匀(异质)形核的过冷度仅为0.02T m。
形核后地长大涉及到长大的形态、长大的方式和长大的速率。
影响晶体长大特征的重要因素是液——固界面的构造。
液——固界面的结构可分为光滑界面和粗糙界面。
晶体的长大速率与其长大方式有关。
连续长大方式对应的是粗糙界面,其长大速率最大,与动态过冷度(液——固界面向液体推移时所需的过冷度)成正比;而二维形核+z长大(螺形位错形核对应)是光滑界面,它们的生长速率均小于连续长大方式的生长速率。
晶体凝固过程晶体凝固是一种物质由液态到固态的转变过程,它是自然界中晶体形成的基础过程。
晶体凝固过程发生在许多不同的领域,如冶金、材料科学、地质学、化学等。
本文将从晶体凝固的原理、过程和应用三个方面来详细介绍晶体凝固的相关内容。
一、晶体凝固的原理晶体凝固的原理可以归结为两个主要因素:热力学驱动力和动力学过程。
热力学驱动力指的是凝固过程中的能量差异,即液态相与固态相之间的自由能差。
当液态相的自由能高于固态相时,晶体凝固就会发生。
动力学过程则是指晶体凝固中的原子或分子在空间上有序排列的过程。
晶体在凝固过程中,原子或分子按照一定的规律有序排列,形成晶体结构。
二、晶体凝固的过程晶体凝固过程可以分为三个阶段:核化、生长和成熟。
1. 核化阶段:在液体中,当达到一定的过饱和度时,原子或分子会聚集形成小的晶核。
晶核的形成是一个热力学过程,需要克服液体的表面张力。
晶核的形成是凝固过程的起点,也是晶体生长的基础。
2. 生长阶段:晶核形成后,它们会在液体中生长。
晶体生长是一个动力学过程,晶体中的原子或分子按照一定的方向和速度有序排列。
晶体生长的速度取决于温度、过饱和度、物质的浓度等因素。
3. 成熟阶段:当晶体生长到一定大小时,晶体就会达到成熟状态。
成熟的晶体具有完整的晶体结构和形态,它们可以继续生长也可以停止生长。
三、晶体凝固的应用晶体凝固在许多领域都有广泛的应用。
1. 冶金领域:晶体凝固技术在冶金中可以用于合金的制备。
通过控制凝固过程中的温度、过饱和度和凝固速度等参数,可以得到具有特定性能的合金材料。
2. 材料科学领域:晶体凝固技术可以用于制备单晶材料,如硅单晶、镁铝合金等。
单晶材料具有优异的物理性能和化学性能,在电子器件、光学器件等领域有重要应用。
3. 地质学领域:晶体凝固是地壳中岩石形成的重要过程。
岩浆在地壳中凝固形成岩石,不同的凝固速度和条件会导致不同的岩石类型。
4. 化学领域:晶体凝固技术可以用于制备纯净的化学物质。
纯金属凝固知识点总结1. 凝固的基本原理在纯金属凝固的过程中,金属离子从液态状态转变为晶态状态,这一过程主要包括两个方面的变化:(1) 原子排列的变化。
在液态金属中,金属原子是无序排列的,而在凝固过程中,金属原子开始有序排列,形成不同的晶体结构。
(2) 基本结构的变化。
不同的金属具有不同的晶体结构,如立方晶体、六方晶体等,这种基本结构的变化是凝固过程中的重要特征。
在金属凝固的过程中,除了原子排列的变化和基本结构的变化外,还会同时涉及到晶体的生长、演变和凝固温度等因素的影响。
因此,要深入了解纯金属凝固的过程,需要综合考虑上述多个因素的作用。
2. 凝固过程中的晶体生长晶体生长是在凝固过程中最基本的现象之一。
在金属凝固的过程中,晶体生长是从液态金属中形成晶体的过程,其过程主要包括以下几个方面:(1) 传质与传热。
在晶体生长的过程中,溶质从液相向固相迁移,而热量也是从熔体向冷凝物质迁移的过程。
这种传质与传热是晶体生长的基础。
(2) 晶体核的形成。
在凝固过程中,晶体核的形成是晶体生长的关键。
晶体核的形成是通过原子或离子以一定的方式排列而形成的,这是晶体生长过程中的起始点。
(3) 晶体生长的机制。
晶体的生长可以通过表面扩散、体积扩散、界面扩散等不同方式进行。
这种不同的生长机制将直接影响晶体的形态和晶体结构。
(4) 晶体生长速率的控制因素。
晶体生长速率受到诸多因素的影响,如温度、凝固速率、溶质浓度等因素都将对晶体生长速率产生显著的影响。
综上所述,要理解纯金属凝固过程中的晶体生长过程,首先需要了解晶体核的形成、晶体生长的机制以及晶体生长速率的控制因素。
这将有助于深入理解凝固过程中的晶体生长现象。
3. 影响凝固过程的因素在金属凝固的过程中,有多种因素会对凝固过程产生影响。
主要包括以下几个方面:(1) 温度。
温度是影响金属凝固的最主要因素之一。
凝固温度的高低不仅会直接影响凝固过程的速率,也会对晶体结构的形成产生重要影响。
2.1.3 晶体的长大晶核形成以后,通过生长完成其结晶过程。
晶体生长是液相中原子不断向晶体表面堆砌的过程,也是固--液界面不断向液相中推移的过程。
界面处固、液两相体积自由能的差值ΔG V 构成了晶体生长的驱动力,其大小取决于界面温度,对合金而言还与其成分有关。
晶体的生长主要受以下几个彼此相关的过程所制约:①界面生长动力学过程;②传热过程;③传质过程。
本节主要讨论晶体生长的界面动力学问题。
2.1.3.1 晶体生长中固—液界面处的原子迁移在晶体生长过程中,由于能量起伏,界面两侧总有一部分原子在获得足够能量后越过界面而进入另一相。
因此在界面处始终存在着两种方向相反的原子迁移运动):固相原子迁移到液相中的熔化反应(m );液相原子迁移到固相中为凝固反应(F )。
图2-4固—液界面处的原子迁移 Fm固相液相单位面积界面处的反应速率为:N S 、N L -单位面积界面处固、液两相的原子数,对于平界面,N S =N L =Nf S 、f L -固、液两相中每个具有足够能量的原子跳向界面的几率,一般f S =f L =1/6;A m 、A F -一个原子到达界面后不因弹性碰撞而被弹回几率,Am ≈1,而A F ≤1。
A F 与原子到达晶体表面后所具有的近邻原子数有关。
晶体表面的台阶越多,迁移原子就越易于获得较多的近邻原子,因而它被弹回的几率就越小,A F 也就越大;v S 、v L -界面处固、液两相原子的振动频率,可近似地认为,v S =v L =v ;T i 为界面温度;)exp(i L F L L F kT Q A f N dt dN −= ν)exp(i V S m S S mkT G Q A f N dt dN ∆+−= νQ -一个具有平均自由能的液相原子越过界面时所需的激活自由能;ΔG V -一个液相原子与一个固相原子所具有的平均体积自由能差值。
根据有:显然,只有当>时,晶体才能生长,生长速度u 应与其差值成正比.00)(T T L T T T L G S L ∆=−=∆→00/)(T T T L G i V −=∆Fdt dN m dt dN生长速度u 即−−−−∝))(exp()exp(610i i F i kT T T L A kT Q N u ν∆−−−= − ∝)exp()exp(61i V F i m F kT G A kT Q N dt dN dt dN u ν由此可见:1)只有当T i <T 0,并满足或ΔG V >时,才有u >0,即:只有当界面处于过冷状态并使相变驱动力足以克服热力学能障时晶体才能生长。
晶体凝固过程晶体凝固是固体物质从液态到固态的转变过程。
当物质的温度降低到一定程度时,其分子或离子聚集在一起,形成有序的、规则排列的晶体结构。
在晶体凝固过程中,物质的微观结构发生了显著的变化,这对于理解物质的性质和应用具有重要意义。
晶体凝固的过程可以分为几个阶段:核化、生长和成熟。
核化是指在液体中形成微小的晶体核心,它是晶体生长的起始点。
核化过程涉及到物质分子或离子的有序排列和结合,需要克服一定的能量阈值。
一旦核心形成,晶体生长便开始了。
晶体生长是指晶体核心周围的分子或离子逐渐加入晶体结构,使其逐渐扩大。
晶体生长的速度取决于温度、浓度、物质的性质以及外界条件等因素。
在生长过程中,晶体表面的分子或离子会与周围的液体发生相互作用,这会影响晶体的形态和结构。
晶体成熟是指晶体生长到一定程度,达到平衡状态。
在成熟阶段,晶体的表面形态和内部结构趋于稳定,晶体的尺寸和形状也基本确定下来。
成熟晶体具有明确的晶格结构和特定的物理、化学性质,可以用于各种应用领域。
晶体凝固是一个复杂的过程,涉及到多种物理和化学现象。
其中,溶剂的挥发、溶质的扩散、界面能的变化等因素都会影响晶体的形成和生长。
此外,晶体凝固过程中还可能出现一些缺陷,如晶体的偏析、晶界的形成等。
这些缺陷会影响晶体的性质和应用。
晶体凝固是固体材料制备的重要过程。
通过控制晶体凝固条件和参数,可以得到具有特定结构和性质的晶体材料。
例如,通过改变凝固速度和温度梯度等条件,可以调控晶体的尺寸和形状,从而获得不同的材料性能。
晶体凝固技术在材料科学、化学工程、电子学等领域有着广泛的应用。
晶体凝固是固态物质从液态到固态的重要转变过程。
通过研究晶体凝固过程,可以深入了解物质的微观结构和性质,为材料的设计和制备提供理论基础和技术支持。
晶体凝固技术的发展将推动材料科学和应用领域的进步,为人类社会的发展做出贡献。