第八章 功率放大器要点
- 格式:ppt
- 大小:746.00 KB
- 文档页数:23
详解功率放大器功率放大器是以输出功率为主要指标的放大器,它不仅要有足够的输出电压,而且要有较大的输出电流。
功率放大器工作于大信号状态,可分为甲类功率放大器、乙类功率放大器、甲乙类功率放大器等。
功率放大器的主要功能和作用是对输入信号进行功率放大,以驱动扬声器、继电器、电动机等负载。
功率放大器是收音机、电视机、扩音机等音响设备电路中必不可少的重要组成部分,在控制和驱动电路中也有广泛的应用。
1.单管功率放大器单管功率放大器是最简单的功率放大器,如图6-21所示。
VT为晶体管,偏置电阻R1、R2和发射极电阻R3为VT建立起稳定的工作点。
T1、T2分别为输入、输出变压器,用于信号耦合、阻抗匹配和传送功率。
C1、C2是旁路电容,为信号电压提供交流通路。
图6-21 单管功率放大器电路单管功率放大器电路的工作过程是:输入交流信号电压Ui1接在输入变压器T1一次侧,在T1二次侧得到耦合电压Ui2。
Ui2叠加于VT基极的直流偏置电压(即工作点)之上,使VT的基极电压随输入信号电压发生变化。
由于晶体管的放大作用,VT集电极电流Ic亦作相应的变化,再经输出变压器T2隔离直流,将交流输出电流Io传递给扬声器BL。
电路各点波形如图6-22所示。
图6-22 单管功率放大器波形单管功率放大器都工作于甲类状态,其主要优点是电路简单,主要缺点是效率较低,因此一般只用作较小功率的放大器,或用作大功率放大器的推动级。
2.双管推挽功率放大器双管推挽功率放大器采用2只功率放大管,分别放大正、负半周的信号,较大地提高了放大器的效率。
根据晶体管的静态工作点是否为0,双管推挽功率放大器分为乙类推挽功率放大器和甲乙类推挽功率放大器。
(1)乙类推挽功率放大器图6-23所示为乙类推挽功率放大器电路,它是由2个相同的晶体管VT1、VT2组成的对称电路。
输入变压器T1的二次侧为中心抽头式对称输出,分别为VT1、VT2基极提供大小相等、相位相反的输入信号电压。
在给定失真率条件下,能产生最大功率输出以驱动某一负载(2)利用模拟功率放大器进行模拟信号放大,如A类、B类和AB类放大器。
从1980年代早期,许多研究者致力于开发不同类型的数字放大器,这种放大器直接从数字语音数据实现功率放大而不需要进行模拟转换,这样的放大器通常称作数字功率放大器或者D类放大器。
1.A(甲)类放大器A类放大器的主要特点是:放大器的工作点Q设定在负载线的中点附近,晶体管在输入信号的整个周期内均导通。
放大器可单管工作,也可以推挽工作。
由于放大器工作在特性曲线的线性范围内,所以瞬态失真和交替失真较小。
电路简单,调试方便。
但效率较低,晶体管功耗大,效率的理论最大值仅有25%,且有较大的非线性失真。
由于效率比较低,现在设计基本上不再使用。
2.B(乙)类放大器B类放大器的主要特点是:放大器的静态点在(VCC,0)处,当没有信号输入时,输出端几乎不消耗功率。
在Vi的正半周期内,Q1导通Q2截止,输出端正半周正弦波;同理,当Vi为负半波正弦波(如图虚线部分所示),所以必须用两管推挽工作。
其特点是效率较高(78%),但是因放大器有一段工作在非线性区域内,故其缺点是"交越失真"较大。
即当信号在-0.6V~ 0.6V 之间时,Q1、Q2都无法导通而引起的。
所以这类放大器也逐渐被设计师摒弃。
3.AB(甲乙)类放大器AB类放大器的主要特点是:晶体管的导通时间稍大于半周期,必须用两管推挽工作。
可以避免交越失真。
交替失真较大,可以抵消偶次谐波失真。
有效率较高,晶体管功耗较小的特点。
4.D类放大器D类(数字音频功率)放大器是一种将输入模拟音频信号或PCM数字信息变换成PWM(脉冲宽度调制)或PDM(脉冲密度调制)的脉冲信号,然后用PWM或PDM的脉冲信号去控制大功率开关器件通/断音频功率放大器,也称为开关放大器。
具有效率高的突出优点。
数字音频功率放大器也看上去成是一个一比特的功率数模变换器.放大器由输入信号处理电路、开关信号形成电路、大功率开关电路(半桥式和全桥式)和低通滤波器(LC)等四部分组成。
功放基本知识:功放俗称“扩音机”他的作用就是把来自音源或前级放大器的弱信号放大,推动音箱放声。
一套良好的音响系统功放的作用功不可没。
功放是音响系统中最基本的设备,它的任务是把来自信号源(专业音响系统中则是来自调音台)的微弱电信号进行放大以驱动扬声器发出声音。
功率放大器简称功放,可以说是各类音响器材中最大的一个家族了,其作用主要是将音源器材输入的较微弱信号进行放大后,产生足够大的电流去推动扬声器进行声音的重放。
由于考虑功率、阻抗、失真、动态以及不同的使用范围和控制调节功能,不同的功放在内部的信号处理、线路设计和生产工艺上也各不相同。
分类:按功放中功放管的导电方式不同,可以分为甲类功放(又称A类)、乙类功放(又称B类)、甲乙类功放(又称AB类)和丁类.功放(又称D类)。
甲类功放是指在信号的整个周期内(正弦波的正负两个半周),放大器的任何功率输出元件都不会出现电流截止(即停止输出)的一类放大器。
甲类放大器工作时会产生高热,效率很低,但固有的优点是不存在交越失真。
单端放大器都是甲类工作方式,推挽放大器可以是甲类,也可以是乙类或甲乙类。
乙类功放是指正弦信号的正负两个半周分别由推挽输出级的两“臂”轮流放大输出的一类放大器,每一“臂”的导电时间为信号的半个周期。
乙类放大器的优点是效率高,缺点是会产生交越失真。
甲乙类功放界于甲类和乙类之间,推挽放大的每一个“臂”导通时间大于信号的半个周期而小于一个周期。
甲乙类放大有效解决了乙类放大器的交越失真问题,效率又比甲类放大器高,因此获得了极为广泛的应用。
丁类功放也称数字式放大器,利用极高频率的转换开关电路来放大音频信号,具有效率高,体积小的优点。
许多功率高达1000W的丁类放大器,体积只不过像VHS录像带那么大。
这类放大器不适宜于用作宽频带的放大器,但在有源超低音音箱中有较多的应用。
按功放输出级放大元件的数量,可以分为单端放大器和推挽放大器。
单端放大器的输出级由一只放大元件(或多只元件但并联成一组)完成对信号正负两个半周的放大。
功率放大器的原理功率放大器是一种能够将输入信号放大到较大功率的电子器件,它在各种电子设备中都有着重要的应用。
功率放大器的原理是基于晶体管的工作原理,通过控制输入信号的大小,从而控制输出信号的功率大小。
接下来,我们将详细介绍功率放大器的原理及其工作过程。
首先,我们来了解一下功率放大器的基本组成。
功率放大器通常由输入端、输出端和控制电路组成。
其中,输入端接收来自信号源的输入信号,输出端输出经过放大的信号,而控制电路则负责控制放大器的工作状态。
在功率放大器中,晶体管是最常用的放大元件。
晶体管有三个电极,分别是发射极、基极和集电极。
当输入信号加到基极时,控制电路会根据输入信号的大小来调节晶体管的工作状态,从而控制输出信号的功率大小。
通常情况下,功率放大器会通过增加输入信号的幅度来实现信号的放大。
功率放大器的原理可以通过放大器的放大倍数来进行解释。
放大倍数是指输出信号与输入信号的比值,它可以用来衡量功率放大器的放大效果。
放大倍数越大,功率放大器的放大效果就越好。
而放大倍数的大小取决于功率放大器的设计和工作状态。
此外,功率放大器的原理还与工作状态有关。
在不同的工作状态下,功率放大器的放大效果也会有所不同。
例如,在放大器的线性工作区域内,输出信号与输入信号的关系是线性的,这时功率放大器的放大效果比较稳定。
而在非线性工作区域内,输出信号与输入信号的关系是非线性的,功率放大器的放大效果会受到一定程度的影响。
总的来说,功率放大器的原理是基于晶体管的工作原理,通过控制输入信号的大小来控制输出信号的功率大小。
在实际应用中,功率放大器的设计和工作状态会对放大效果产生重要影响。
因此,对功率放大器的原理有深入的了解,对于设计和应用功率放大器都具有重要意义。
综上所述,功率放大器是一种能够将输入信号放大到较大功率的电子器件,其原理是基于晶体管的工作原理,通过控制输入信号的大小来控制输出信号的功率大小。
在实际应用中,功率放大器的设计和工作状态会对放大效果产生重要影响。
功率放大器设计与优化原则功率放大器是电子设备中常用的一种电路,在音频放大、射频信号放大和功率输出等场景中起到重要的作用。
本文将介绍功率放大器的设计与优化原则,以帮助读者更好地理解和运用功率放大器。
1. 功率放大器的基本原理功率放大器是一种将输入信号放大到输出信号的电路。
其基本原理是利用放大器的放大倍数,将输入信号的幅度增加,以获得更大的输出功率。
2. 功率放大器设计的基本要点(1)选择适当的功率放大器类型:常见的功率放大器类型包括B 类、AB类、C类等。
不同类型的功率放大器适用于不同的应用场景,需要根据具体需求选择合适的类型。
(2)合理选择功率放大器的工作点:功率放大器的工作点决定了其在整个工作范围内的输出性能。
合理选择工作点可使功率放大器在最佳工作状态下发挥最大功率放大能力。
(3)保证功率放大器的稳定性:稳定性是功率放大器设计中非常重要的考虑因素。
通过合理的负反馈设计、稳定的电源等手段,可以提高功率放大器的稳定性。
3. 功率放大器的优化原则(1)提高功率放大器的效率:效率是功率放大器设计中的关键指标之一。
有效提高功率放大器的效率可以减少功耗,提高整体系统的能源利用率。
(2)降低功率放大器的失真:失真是功率放大器设计中的一个难题。
通过合理的电路设计、选择合适的元器件等手段,可以降低功率放大器的失真水平,提高音质或信号传输质量。
(3)提高功率放大器的线性度:线性度是功率放大器设计中另一个重要指标。
通过合理的电路设计、使用高线性度的元器件等手段,可以提高功率放大器在不同输入幅度下的线性特性。
(4)减小功率放大器的尺寸和重量:功率放大器通常具有一定的尺寸和重量,这对于一些有特殊要求的应用场景可能会造成不便。
通过采用轻负载设计、高效率元器件等手段,可以有效减小功率放大器的尺寸和重量。
4. 总结本文介绍了功率放大器设计与优化原则的基本要点,包括功率放大器的基本原理、设计的基本要点以及优化原则。
了解和掌握这些原则,对于更好地进行功率放大器的设计和优化具有重要的指导意义。