8.7雪花曲线与分形云解析
- 格式:ppt
- 大小:4.14 MB
- 文档页数:8
雪花中的数学问题雪花中的数学问题主要是与雪花曲线(也称为科赫曲线)有关。
雪花曲线是由一组连续的三角形构成,每个三角形都以一个点为中心,向外延伸出三个分支,每个分支又继续向外延伸出三个分支,如此不断重复。
这种曲线的形状类似于雪花,因此得名。
在雪花曲线中,有一个重要的数学概念叫做“迭代函数系统”(Iterated Function Systems,简称IFS)。
迭代函数系统是由一组函数构成,每个函数都会将输入的图像变换成另一幅图像。
在雪花曲线的生成过程中,每个三角形都可以看作是一个迭代函数,通过不断应用这些函数,最终生成了雪花曲线的形状。
此外,雪花曲线还与分形几何有关。
分形几何是一种研究形状和结构的数学分支,它的特点是可以通过不断迭代来生成复杂的形状。
雪花曲线是一种典型的分形几何图形,其形状和结构可以通过迭代函数系统和分形几何的理论来描述和分析。
除了在自然界中发现的美丽分形结构,雪花曲线还与计算机图形学和数据压缩等领域有着紧密的联系。
在计算机图形学中,雪花曲线可以作为一种生成复杂形状和图案的有效方法。
而在数据压缩领域,雪花曲线因其独特的形状和结构也被用作一种高效的数据压缩算法。
此外,雪花曲线还被应用于图像处理和模式识别等领域。
通过利用雪花曲线的特性和算法,可以实现对图像的高效处理和识别。
例如,在图像处理中,可以使用雪花曲线来分割图像中的不同区域,从而实现图像的分割和识别。
总之,雪花曲线作为一种独特的数学概念和分形几何图形,不仅在自然界中有着广泛的应用,还在计算机科学、数据压缩、图像处理和模式识别等领域发挥着重要的作用。
通过深入研究和探索雪花曲线背后的数学原理和算法,我们可以不断发现新的应用场景并推动相关领域的发展。
雪花曲线
雪花曲线因其形状类似雪花而得名,它的产生假定也跟雪花类似.
由图1 那样的等边三角形开始.然后把三角形的每条边三等分,并在每条边三分后的中段向外作新的等边三角形,但要像图2那样去掉与原三角形叠合的边.接着对每个等边三角形尖出的部分继续上述过程,即在每条边三分后的中段,像图3那样向外画新的尖形.不断重复这样的过程,便产生了雪花曲线.
雪花曲线令人惊异的性质是:它具有有限的面积,但却有着无限的周长!
雪花曲线的周长持续增加而没有界限,但整条曲线却可以画在一张
倍.。
科赫曲线
简介
科赫曲线(Koch curve )是一种像雪花的几何曲线,所以又称为雪花曲线。
1904年瑞典数学家科赫第一次描述了这种不论由直段还是由曲段组成的始终保持连通的线,因此将这种曲线成为科赫曲线。
定义
设想一个边长为1的等边三角形,取每边中间的三分之一,接上去一个形状完全相似的但边长为其三分之一的三角形,结果是一个六角形。
现在取六角形的每个边做同样的变换,即在中间三分之一接上更小的三角形,以此重复,直至无穷。
外界的变得原来越细微曲折,形状接近理想化的雪花。
画法
1、任意画一个正三角形,并把每一边三等分;
2、取三等分后的一边中间一段为边向外作正三角形,并把这“中间一段”擦掉;
3、重复上述两步,画出更小的三角形。
4、一直重复,直到无穷,所画出的曲线叫做科赫曲线。
特性
1、它是一条连续的回线,永远不会自我相交。
2、曲线任何处不可导,即任何地点都是不平滑的。
3、曲线是无限长的,即在有限空间里的无限长度。
4、曲线上任意两点距离无穷大。
5、每次变化面积都会增加,但是总面积是有限的,不会超过初始三角形的外接圆。
思考
科赫曲线中产生一个匪夷所思的悖论:"无穷大"的边界,包围着有限的面积。
这让保守派数学大师们都很难相信。
科赫曲线是比较典型的分形图形,它具有严格的自相似特性。
提问:在有限面积里面,无穷的去选择无穷小的点来组成的"封闭"曲线.会包围着无穷大的面积吗?。
科勒雪花分形维度科勒雪花是一种著名的分形结构,以其美丽而复杂的形态而闻名。
在数学上,分形是具有自相似性的几何形状,而科勒雪花便是一个典型的例子。
在本文中,我们将探讨科勒雪花及其分形维度的概念和原理。
一、科勒雪花的形成科勒雪花是通过重复迭代的方式形成的。
起始时,我们以一个正三角形为基础,然后将这个正三角形的每条边分成三等份。
然后在中间等分处向外延伸出一个等边三角形,形成一个类似于“Y”的形状。
接下来,我们在每个“Y”的线段上重复进行相同的操作,即将其分成三等份,并在中间等分处向外延伸出一个等边三角形。
如此重复下去,我们就可以不断生成越来越复杂的科勒雪花。
二、科勒雪花的自相似性科勒雪花的自相似性是指它的每一部分都与整个形状非常相似。
无论是放大整个雪花,还是放大其中的一个小部分,都会发现它们的形态基本一致。
这种自相似性是科勒雪花成为分形的重要特征之一。
三、科勒雪花的分形维度分形维度是描述分形形状复杂程度的一个指标。
对于科勒雪花来说,它的分形维度是介于一维和二维之间的一个数值。
具体计算分形维度的方法有多种,其中一种常用的方法是通过不断地缩小分形形状的比例尺寸,并计算每次缩小的比例因子,然后取对数。
当比例尺寸接近无穷小时,取对数之差的极限就是分形维度。
四、科勒雪花的分形维度计算对于科勒雪花来说,它的分形维度可以通过以下步骤计算:1. 将科勒雪花等分为3个小雪花;2. 计算沿着每个小雪花边缘的长度,并取对数;3. 将上一步的结果相加,并除以对数3,得到平均值;4. 取以上平均值的对数,即为科勒雪花的分形维度。
通过这种方法,我们可以计算出科勒雪花的分形维度约等于 1.261。
五、科勒雪花的应用科勒雪花不仅仅是一种数学上的构造,它还有许多实际应用。
例如,在计算机图形学中,科勒雪花可以用来生成复杂而美丽的图案。
此外,科勒雪花的自相似性和分形特性也使得它成为研究自然界复杂形态的工具之一,例如树叶的形状、山川的轮廓等。
一、教学背景分析:本节课所学内容可以看作属于高一数学《数列》中的内容,《数列》是人教版教材中第三章的内容,在讲完了等比数列后开设本节研究课。
本节课通过研究大家熟知的雪花,分析它的形状、周长及其面积,来激发大家学习的兴趣,唤起大家对数学美的追求。
同时通过研究雪花曲线,将分形几何的内容逐步渗透到我们的教学中来,为以后的进一步学习打下铺垫。
二、教学目标:1.认知目标:①学会用等比数列解决实际问题;②了解雪花曲线,了解分形几何。
2.能力目标:①培养学生自我探究,自我发现的能力;②利用几何画板自我掌握新知识的能力;③同学之间相互协作的能力。
3.情感目标:①创设问题情境,激发学生学习数学的热情和兴趣;②培养学生对数学美的认识,对美的追求。
三、教法、学法:通过提出问题“雪花的形状如何?”引出话题,激起学生的兴趣,相互讨论得出结论,由老师给出科赫的雪花曲线构成方法,让学生在几何画板环境下作雪花曲线,以探求曲线形状。
雪花曲线的周长及其所围面积可通过讨论由学生来发现计算方法,老师在其中起引导作用。
本节课以学生为主来发现问题、解决问题,通过学生之间的讨论来达到对能力的培养。
四、教学重、难点:重点:对雪花曲线认识及其周长、所围面积的求法。
难点:雪花曲线的周长无限长,而面积是有限的,即无限的曲线围成一个有限的面积的认识。
五、教学程序:(一)创设情景,激起兴趣通过封面的雪花飘落,引出“雪花形状”这个话题,让学生自由探讨,发表自己对雪花的理解,以激起他们对研究雪花的兴趣。
(二)激烈讨论,引出话题曲线生长(5次)当同学们通过讨论,对雪花形状有了一个初步认识之后,由老师给出科赫的构造雪花曲线的方法,让学生使用几何画板作为工具来研究雪花曲线的形状。
雪花曲线是无限生长的,永无止境,老师使用已做好的课件来演示曲线的生长过程,对曲线放大,观察局部,引起学生对曲线自相似...的初步认识。
无限生长的曲线它的周长如何?所围面积如何?提出问题让学生进一步思考。
下列关于科赫曲线和科赫雪花的说法科赫曲线和科赫雪花是非常有趣和迷人的数学构造之一。
科赫曲线是一条无限长的分形曲线,由瑞典数学家赫尔曼·冯·科赫于20世纪初提出。
科赫雪花是由科赫曲线得到的一种特殊形状,它由三个等边三角形组成,而每个等边三角形的边都被替换为科赫曲线的一部分。
科赫曲线和科赫雪花具有非常特殊的几何属性和数学特性,下面将介绍关于它们的一些重要性质和应用。
首先,科赫曲线和科赫雪花是分形结构。
分形是指具有自相似性的物体或形状,意味着无论在哪个尺度上观察,它们的局部都类似于整体。
科赫曲线是分形的典型例子,因为无论我们放大或缩小它,都可以看到相似的曲线结构。
科赫雪花也是分形结构,因为整个雪花和它的一小部分都非常相似。
分形结构在自然界和人工设计中广泛存在,例如山脉、云彩、树枝、海岸线等等,它们展示了自然界中的美与复杂性。
其次,科赫曲线和科赫雪花具有无限长度。
科赫曲线的长度是无限的,尽管它曲线的外观是有限的。
这是因为科赫曲线每次迭代都会增加长度,直到无限趋近于一个无穷大的值。
科赫雪花也有相似的性质,虽然每一次迭代都会增加雪花的边长,但随着迭代的无限进行,雪花的长度也会趋近于无穷大。
这种无限长度的特性给科赫曲线和科赫雪花带来了它们独特的美感和神秘性。
第三,科赫曲线和科赫雪花具有无法填充的面积。
尽管科赫曲线和科赫雪花都有无限长度,但它们的面积却是有限的。
这是因为科赫曲线的的宽度趋于零,所以它的面积收敛到一个有限的值。
科赫雪花也有相似的性质,它不断迭代后的面积也是有限的,尽管每个小三角形的面积趋近于零。
科赫曲线和科赫雪花的这种特性使它们成为有趣的数学问题,许多数学家和科学家对它们的性质进行了深入研究。
另外,科赫曲线和科赫雪花是可重复的。
科赫曲线和科赫雪花的构造是通过重复特定的操作来获得的。
科赫曲线是通过每个线段的两侧添加一个等边三角形来获得的,而科赫雪花是通过将三个等边三角形的边替换为科赫曲线的一部分来获得的。
奇妙的雪花曲线教学目标:(知识目标)1 通过对雪花曲线周长、面积等问题的探究让学生了解数学知识的形成过程;2 使学生了解分形几何的有关内容。
(能力目标)1 通过系列的探究性活动,使学生了解提出和解决数学问题的方法;2 通过对雪花曲线等图形的探究提高学生应用数学的能力。
(情感目标)1 让学生感受数学来源于实践,又服务于实践的辨证唯物主义观点2 通过生活中的具体实例,培养学生对数学美的认识以及对大自然的热爱。
教学重点:探究雪花曲线的周长及其所围面积;教学难点:雪花曲线所围面积的计算方法的寻求;教学方法:引导探究式教学媒体:计算机教学过程设计:1一、问题背景:播放雪景的图片,提问雪花的形状如何,激发学生兴趣。
二、研究问题:如果把雪花想象成如图所示的正六角形,提问学生能否从一个等边三角形出发作出这样的图形。
接着进一步指出,雪花的形状其实非常复杂,右图是瑞典数学家科赫将雪花理想化得到的科赫雪花曲线,提问学生能否仍然从等边三角形出发作出这样的一条雪花曲线,由学生讨论得出:在等边三角形每条边的中央分别向外作等边三角形,边长是原三角形边长的三分之一,就得到了一个六角形。
依照此法,无限制的进行下去,就可以得到漂亮的雪花曲线了。
雪花曲线除了具有漂亮的外形,还蕴涵了哪些数学规律,这就是我们这节课要研究的内容(板书课题)2问题1:对雪花曲线作进一步思考,在雪花曲线的每一次生长中,相对于原三角形都发生了哪些变化,导学生发现它的边长、边数、周长和面积等都发生了变化。
问题2:逐步生长,探究周长的变化规律引导学生发现等边三角形的每一边在生长过程中所发生的变化都是相同的,因此可以只研究其中一条边的变化规律,从而找到解决问题的最优化策略。
让学生自主发现、互相讨论,共同寻找到规律:3得到周长的计算公式后可以提问学生:当n越来越大时,雪花曲线的周长会有什么变化,当原图中三角形的边长为1cm时,显然三角形的周长是3cm,n=33呢,n=82呢, 我们不妨用计算机计算出这样一组数据:n=33时,周长为39819.84cm,约为398米;10 n=82时,周长约为5.27×10cm。
神奇的分形艺术神奇的分形艺术(一):无限长的曲线可能围住一块有限的面积Brain Storm | 2007-07-05 9:45| 21 Comments | 本文内容遵从CC版权协议转载请注明出自很多东西都是吹神了的,其中麦田圈之谜相当引人注目。
上个世纪里人们时不时能听见某个农民早晨醒了到麦田地一看立马吓得屁滚尿流的故事。
上面这幅图就是97年在英国Silbury山上发现的麦田圈,看上去大致上是一个雪花形状。
你或许会觉得这个图形很好看。
看了下面的文字后,你会发现这个图形远远不是“好看”可以概括的,它的背后还有很多东西。
在说明什么是分形艺术前,我们先按照下面的方法构造一个图形。
看下图,首先画一个线段,然后把它平分成三段,去掉中间那一段并用两条等长的线段代替。
这样,原来的一条线段就变成了四条小的线段。
用相同的方法把每一条小的线段的中间三分之一替换为等边三角形的两边,得到了16条更小的线段。
然后继续对16条线段进行相同的操作,并无限地迭代下去。
下图是这个图形前五次迭代的过程,可以看到这样的分辨率下已经不能显示出第五次迭代后图形的所有细节了。
这样的图形可以用Logo语言很轻松地画出来。
你可能注意到一个有趣的事实:整个线条的长度每一次都变成了原来的4/3。
如果最初的线段长为一个单位,那么第一次操作后总长度变成了4/3,第二次操作后总长增加到16/9,第n次操作后长度为(4/3)^n。
毫无疑问,操作无限进行下去,这条曲线将达到无限长。
难以置信的是这条无限长的曲线却“始终只有那么大”。
当把三条这样的曲线头尾相接组成一个封闭图形时,有趣的事情发生了。
这个雪花一样的图形有着无限长的边界,但是它的总面积却是有限的。
换句话说,无限长的曲线围住了一块有限的面积。
有人可能会问为什么面积是有限的。
虽然从上面的图上看结论很显然,但这里我们还是要给出一个简单的证明。
三条曲线中每一条的第n次迭代前有4^(n-1)个长为(1/3)^(n-1)的线段,迭代后多出的面积为4^(n-1)个边长为(1/3)^n的等边三角形。