一维无限深势阱
- 格式:doc
- 大小:133.51 KB
- 文档页数:3
55§2.6一维无限深势阱(Potential Well )(理想模型)重点:一维无限深势阱中粒子运动的求解难点:对结果的理解实际模型:金属中电子的运动,不计电子间的相互碰撞,也不考虑周期排列的金属离子对它们的作用。
一、写出本征问题 势场为:⎩⎨⎧≥∞<=a x ,a x ,0)x (U 区域I(阱内,a x <)方程为: )x (E )x (dx d 2I I 222ψ=ψμ−h (1) 区域II、III(阱外,a x ≥)方程为: )x (E )x ()U dxd 2()III (II )III (II 0222ψ=ψ+μ−h (2) 其中∞=0U 。
波函数的边界条件是:)a ()a (II I ψ=ψ,)a ()a (III I −ψ=−ψ (3)二、求解本征方程 我们令2E 2h μ=α, 20)E U (2'h−μ=α (4) 则:)x (E )x (dx d 2I I 222ψ=ψμ−h 的解为: x i x i I Be Ae )x (αα−+=ψ a x <(5)56 )x (E )x ()U dx d 2()III (II )III (II 0222ψ=ψ+μ−h 的解为:x 'x'II e 'B e 'A )x (αα−+=ψ a x ≥ (6)x 'x 'III e ''B e ''A )x (αα−+=ψ a x −≤ (7) 由(6)-(7)式和波函数的有限性知: 0'B ,0''A ==,即:x 'II e 'A )x (α−=ψ a x ≥x 'III e ''B )x (α=ψ a x −≤又由于∞=0U ,则:∞=−μ=α20)E U (2'h于是:0)x ()x (III II =ψ=ψ (8) 而)a ()a (II I ψ=ψ,)a ()a (III I −ψ=−ψ;x i xi I Be Ae )x (αα−+=ψ则:⎩⎨⎧=+=+α−ααα−0Be Ae 0Be Ae a i a i ai a i (9)于是A、B 不能全为零的充分必要条件为: 0e e e e a i a i ai ai =α−ααα−, 即:0)a 2sin(=α 解之得:a 2n π=α,,....2,1,0n ±±= (10)将其代入到⎩⎨⎧=+=+α−ααα−0Be Ae 0Be Ae a i a i a i ai ,得:0Be Ae 2/in 2/in =+ππ−即:B )1(A 1n +−=代入x i x i I Be Ae )x (αα−+=ψ中,得:57 ⎪⎪⎩⎪⎪⎨⎧=π=π=ψ,..5,3,1n ,x a 2n cos D ,...6,4,2n ,x a 2n sin C )x (I a x < (11)其中0n =,()0x =Ψ为平凡解,无意义;,...2,1n −−=不给出新的解。
一维无限深势阱无限深阱假设粒子不能离开势阱,也就是有一个势为无穷大的壁。
势可以写成()⎪⎪⎩⎪⎪⎨⎧>≤≤-∞=2022a x a x a x V(注:也可以选用坐标形如第二个图,这样的解简单,且容易推广到三维,但是对称性不如第一个图明显。
)注意,这个势是有奇异性的,我们分别有势阱内和势阱外的方程:⎪⎪⎩⎪⎪⎨⎧>=≤=+外)(阱外,粒子不能到阱(阱内)2020222a x a x E m dx d ψψψ 考虑势阱内,定义: 22mE k ≡ 定态方程为:0222=+ψψk dxd 此方程的通解为:kx B kx A cos sin +=ψ或:()δψ+=kx A sin连续性条件:02=±=ax ψ(单值、有限自动满足) 于是:⎪⎪⎩⎪⎪⎨⎧-+-+)2(cos )2(sin )2(cos )2(sin a k B a k A a k B a k A (注意:由于势在边界上有奇异性(无限深 ), ψ不连续,有跃变。
)这是关于 A 、B 的齐次方程,有非零解的条件是系数行列式为零,即:02cos 2sin 2cos 2sin =-a k a k a kak因此, 02cos 2sin 2=a k a k 即:0sin =ka故:() 3,2,1==n n ka π(注意:n 不能取 0 ,否则就出现了不振动的“波”。
)an k k n π== 22222ma n E n π= n maE 222π ≈∆ 可见势阱中能级是分立的,(与用德布罗意驻波直接计算一样)。
需要注意的是,n ma E 222π ≈∆,即能级越高越稀疏,但大量子数情况下02~→∆nE E n n ,即n n E E <<∆,所以在经典情况下(大量子数)感受不到能级的间隔,便认为能量是连续的,与对应原理相符。
下面求波函数,我们有:n 为奇数(偶宇称):002sin =⇒=A a k A n ⎪⎪⎩⎪⎪⎨⎧>≤=∴202cos a x a x x k B n n ψ n 为偶数(奇宇称):002cos =⇒=B a k B n ⎪⎪⎩⎪⎪⎨⎧>≤=∴202sin a x a x x k A n n ψ其实上述结果可以直接看出来,因为态应该取确定的宇称,因此只能是sin 或者cos ,不可能是它们的组合。
6.ξ一维无限深势阱考虑一维空间中运动的粒子,它的势能在一定区域内:0,,x x aU x a⎧<⎪=⎨∞≥⎪⎩ 如右图这种势叫一维无限深势阱 因x U 不含 t ,属于定态问题。
体系所满足的定态薛定谔方程是:()2222dE x a dx ψψμ-=<①()22022dU E x a dxψψψμ-+=≥②②中,0U →∞由波函数应满足的连续性和有限性条件,只有当ψ=0时,②式才能成立,所以,有:ψ=0,x a ≥现求解①式,改写为:2221222222020sin cos ,dE dxE d x a dx A x B x x aψψμψμααψψαα+=⎛⎫=+=< ⎪⎝⎭=+<令:则:,其解为: (本身上方说的解可表为如下振荡函数形式:sin x α,cos ,i x x e αα±,但因现在势阱具有空间反射不变性,()()x x U U -=能量本征函数必定有确定的宇称曾书——P49——所以,只能取sin x α,或cos x α的形式。
根据ψ的连续性,因②式得ψ=0,x a ≥,于是:,sin cos 0sin cos 0sin 0cos 0x a A a B a x a a B a a B a αααααα=+==-+===时时,A 两式相减,得:A 两式相加,得:因A,B 不能同时为0,否则,sin cos A x B x ψαα=+处也为0,这在物理上无意义。
(物理问题对ψ的要求)所以,得到两组解:⑴0,cos 0A a α== ⑵0,sin 0A a α==对第⑴组解,有,1,3,5 (2)n a n απ==对第⑵组解有:,2,4,6 (2)n a n απ==合并,即有:,1,2,3,4,5 (2)n a n απ==其中对⑴组,n 取奇数,对第⑵组n 取偶数,注意,n 不能取0,否则ψ=0,将2na απ=代回1222E μα⎛⎫= ⎪⎝⎭,得体系的能量本征值为:2222,8n n E n aπμ=为整数这说明,并非任何E 值所相应的波函数都能满足本问题所要求的边条件,而只能取上式给出的那些分立值n E ,此时的波函数在物理上才是可接受的。
55§2.6一维无限深势阱(Potential Well )(理想模型)重点:一维无限深势阱中粒子运动的求解难点:对结果的理解实际模型:金属中电子的运动,不计电子间的相互碰撞,也不考虑周期排列的金属离子对它们的作用。
一、写出本征问题 势场为:⎩⎨⎧≥∞<=a x ,a x ,0)x (U 区域I(阱内,a x <)方程为: )x (E )x (dx d 2I I 222ψ=ψμ−h (1) 区域II、III(阱外,a x ≥)方程为: )x (E )x ()U dxd 2()III (II )III (II 0222ψ=ψ+μ−h (2) 其中∞=0U 。
波函数的边界条件是:)a ()a (II I ψ=ψ,)a ()a (III I −ψ=−ψ (3)二、求解本征方程 我们令2E 2h μ=α, 20)E U (2'h−μ=α (4) 则:)x (E )x (dx d 2I I 222ψ=ψμ−h 的解为: x i x i I Be Ae )x (αα−+=ψ a x <(5)56 )x (E )x ()U dx d 2()III (II )III (II 0222ψ=ψ+μ−h 的解为:x 'x'II e 'B e 'A )x (αα−+=ψ a x ≥ (6)x 'x 'III e ''B e ''A )x (αα−+=ψ a x −≤ (7) 由(6)-(7)式和波函数的有限性知: 0'B ,0''A ==,即:x 'II e 'A )x (α−=ψ a x ≥x 'III e ''B )x (α=ψ a x −≤又由于∞=0U ,则:∞=−μ=α20)E U (2'h于是:0)x ()x (III II =ψ=ψ (8) 而)a ()a (II I ψ=ψ,)a ()a (III I −ψ=−ψ;x i xi I Be Ae )x (αα−+=ψ则:⎩⎨⎧=+=+α−ααα−0Be Ae 0Be Ae a i a i ai a i (9)于是A、B 不能全为零的充分必要条件为: 0e e e e a i a i ai ai =α−ααα−, 即:0)a 2sin(=α 解之得:a 2n π=α,,....2,1,0n ±±= (10)将其代入到⎩⎨⎧=+=+α−ααα−0Be Ae 0Be Ae a i a i a i ai ,得:0Be Ae 2/in 2/in =+ππ−即:B )1(A 1n +−=代入x i x i I Be Ae )x (αα−+=ψ中,得:57 ⎪⎪⎩⎪⎪⎨⎧=π=π=ψ,..5,3,1n ,x a 2n cos D ,...6,4,2n ,x a 2n sin C )x (I a x < (11)其中0n =,()0x =Ψ为平凡解,无意义;,...2,1n −−=不给出新的解。
一维无限深势阱定义编辑粒子在一种简单外力场中做一维运动,其势能函数为U(X)=0 (-a<x<a);U(x)=∞ (x≥a或x≤-a)。
由于其函数图形像阱,且势能在一定区域为0,而在此区域外势能为无穷大,所以这种势能分布叫做一维无限深势阱。
实际模型编辑自由电子在一块金属中的运动相当于在势阱中的运动。
在阱内,由于势能为零,粒子受到的总的力为零,其运动是自由的。
在边界上x=0或x=a处,由于势能突然增加到无限大,粒子受到无限大指向阱内的力。
因此,粒子的位置不可能到达0<x<a的范围以外。
一维无限深势阱中粒子运动的波函数编辑一维无限深势阱中粒子运动的波函数为Ψ(x)=√(2/a)·sin(nπx/a) (0<x<a)。
三、一维势阱3.1 一维无限深势阱要使电子脱离金属,需要对它做功,这相当于电子在金属表面处势能突然增大,自由电子在金属内部的运动,可近似比作在无限深势阱的运动。
由于金属是各向同性的,便可简化为电子在一维无限深势阱中的运动。
势能曲线如右图,势能表达式为电子在一维无限深势阱中运动,用经典力学描述和量子力学描述得到了完全不同的结果。
按照经典概念,当外界向它提供能量时,电子可获得此能量而自身能量发生连续变化。
电子在阱内任何位置出现的概率也是相等的。
然而,按照量子力学观点,它的行为却不是这样的。
(1) 定态薛定谔方程的解电子所受的保守力,在边界处电子所受的力无限大,指向阱内,意味着电子不可能越出阱外,由波函数物理意义可知势阱外波函数。
电子在势阱内势能为零,受力为零。
势阱内定态薛定谔方程为令方程变为其解为根据波函数应满足的标准化条件,波函数应在边界x=0和x=a上连续得应用归一化条件求得于是定态波函数为(2) 能量量子化因,合并(23.3.3)式,即得到一维无限深势阱中的电子能量上式表明:电子的能量不能连续地取任意值,只能取分立值,即能量是量子化的,可形象地称为处于相应的能级(如右图所示)。
6.ξ一维无限深势阱
考虑一维空间中运动的粒子,它的势能在一定区域内:
0,,x x a U x a
⎧<⎪=⎨∞≥⎪⎩ 如右图
这种势叫一维无限深势阱
因x U 不含 t ,属于定态问题。
体系所满足的定态薛定谔方程是:
()2
222d E x a dx ψ
ψμ-=<① ()2
2022d U E x a dx ψ
ψψμ-+=≥② ②中,0U →∞由波函数应满足的连续性和有限性条件,只有当ψ=0时,②式才能成立,所以,有:ψ=0,x a ≥现求解①式,改写为:222122
2222020sin cos ,d E dx
E d x a dx A x B x x a
ψψμψμααψψαα+=⎛⎫=+=< ⎪⎝⎭
=+<令:则:,其解为: (本身上方说的解可表为如下振荡函数形式:sin x α,cos ,i x x e αα±,
但因现在势阱具有空间反射不变性,()()x x U U -=能量本征函数必定有确定的宇称曾书——P49——所以,只能取sin x α,或cos x α的形式。
根据ψ的连续性,因②式得ψ=0,x a ≥,于是:
,sin cos 0
sin cos 0
sin 0
cos 0
x a A a B a x a a B a a B a αααααα=+==-+===时时,A 两式相减,得:A 两式相加,得: 因A,B 不能同时为0,否则,sin cos A x B x ψαα=+处也为0,这在物理上无意义。
(物理问题对ψ的要求)
所以,得到两组解:⑴0,cos 0A a α== ⑵0,sin 0A a α==对第⑴组解,有,1,3,5.......2n a n απ==对第⑵组解有:,2,4,6 (2)
n a n απ== 合并,即有:,1,2,3,4,5 (2)
n a n απ==其中对⑴组,n 取奇数,对第⑵组n 取偶数,注意,n 不能取0,否则ψ=0,将2n a απ=代回12
22E μα⎛⎫= ⎪⎝⎭,得体系的能量本征值为:222
2
,8n n E n a πμ=为整数这说明,并非任何E 值所相应的波函数都能满足本问题所要求的边条件,而只能取上式给出的那些分立值n E ,此时的波函数在物理上才是可接受的。
这样,我们得到:体系的能量是量子化的,即能谱是分立的。
n E 称为体系的能量本征值。
相应的本征波函数为:P36
第一组n ψ为偶函数,即波函数具有偶宇称
第二组n ψ为奇函数,即波函数具有奇宇称
两式合并,得n ψ
的表达式,进行归一化,得'A =
子的定态波函数为:()()(),sin 2n n iE iE t t n n x n x t e x a e a a πψ--ψ==+(n ψ,与n E 对
应关系,粒子处于1ψ态时,E 有确定值2E )
讨论:①粒子最低能级22
1208E a
πμ=≠,这与经典粒子不同,是微观粒子波
动性的表现,因为“静止的波”是没有意义的,从测不准关系也可得出定性的结论,因粒子限制在无限保势阱中,位置不确定度x a ∆,按测不准关系,2p x a ∆∆所以,粒子的能量()22
220228p p E a μμμ∆≠
②应用公式s i n 2i i e e i
θθθ--=将上述定态波函数写成指数形式,有()221212,...(,n n i n i n x E t x E t a a n x t C e C e C C ππ⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭ψ=+为两个常数)所以,(),n x t ψ是由两个沿相反方向传播的平面波迭加而成的驻波,各能量本征值对应的本征函数及对应的粒子位置几率密度分布见P37,图8,图9
从图8知,除端点(x a =±)外,基态波函数1ψ无节点,第11激发态(n =2)有一个节点,第k 激发态(n=k+1)有k 个节点。
③由上述讨论知00x ψ≥=,即粒子波束缚在势阱内部,通常把∞处为0的波函数所描述的状态叫束缚态。
一般地,束缚态的能级是分立的(在势阱为[]02a ,的情况?)。