中科院量子力学超详细笔记 第三章 一维问题
- 格式:pdf
- 大小:363.66 KB
- 文档页数:40
量子力学专题三:一维势场中的粒子一、一维薛定谔方程边界条件和处理办法(熟练掌握)1、边界条件:A、束缚态边界条件:在无穷远处,找到粒子的概率为零,相应的波函数的值应该趋近于零;B、连续性边条件:a、波函数连续;b、波函数的一阶偏导数连续。
(注意:不一定同时成立!!)C、周期性边界条件:在求解角动量l分量的本征函数时,利用周期性边界条件可以确z定本征函数的归一化常数;在求解转子的能量本征函数时,亦可以利用周期性边界条件来确定其归一化常数。
2、处理方法:A、列出不同区间的能量本征方程,并对其进行求解;B、根据束缚态边条件,选择适合的解;C、根据连续性边条件,对得到的波函数进行归一化处理;D、写出本征函数和对应的能量本征值。
二、一维方势阱:1、一维无限深方势阱的求解方法及其物理讨论(熟练掌握) A 、非对称势阱: a 、解题步骤:(1)写出各个区间的能量本行方程; (2)根据写出的微分方程,求出其通解;(3)根据连续性边界条件,确定其相位及其能量本征值的取值; (4)根据概率诠释,对波函数进行归一化处理,确定待定常数; (5)写出能量本征方程和对应的能量本征值。
b 、具体过程:)0(),0(0)(a x a x x x V <<><⎩⎨⎧∞=(1)列出不同区间的能量本征方程,并对其进行求解; 在0<x 和a x >区间,波函数为:0)(≡x ψ在ax <<0区间,能量本征方程为:)()(2222x E x dxdm ψψ=-对其变形,得2=+''ψψk其中,mE k2=(0>E )。
解得: )sin()(δψ+=kx A x(2)根据束缚态边条件,选择适合的解;此处的束缚态边条件,即粒子在无穷远处出现的概率为零,在求解本征方程——在0<x 和a x >区间,波函数为:0)(≡x ψ——时已经应用了!(3)根据连续性边条件,对得到的波函数进行归一化处理;在0=x 处,波函数连续,有0sin )0(==δψA ,则有0=δ。
第三章习题解答3.1 一维谐振子处在基态t i x e x ωαπαψ2222)(--=,求:(1)势能的平均值2221x U μω=; (2)动能的平均值μ22p T =;(3)动量的几率分布函数。
解:(1) ⎰∞∞--==dx e x x U x 2222222121απαμωμω μωμωππαμω ⋅==⋅=2222221111221ω 41= (2) ⎰∞∞-==dx x p x p T )(ˆ)(2122*2ψψμμ ⎰∞∞----=dx e dx d e x x 22222122221)(21ααμπα ⎰∞∞---=dx e x x 22)1(22222αααμπα][222222222⎰⎰∞∞--∞∞---=dx e x dx e x xααααμπα]2[23222απααπαμπα⋅-=μωμαμαπαμπα⋅===442222222 ω 41=或 ωωω 414121=-=-=U E T (3) ⎰=dx x x p c p )()()(*ψψ 212221⎰∞∞---=dx ee Px i xαπαπ⎰∞∞---=dx eePx i x222121απαπ⎰∞∞--+-=dx ep ip x 2222)(21 21αααπαπ ⎰∞∞-+--=dx ee ip x p 222222)(212 21αααπαπ παπαπα22122p e -=22221απαp e-=动量几率分布函数为 2221)()(2απαωp ep c p -==#3.2.氢原子处在基态0/301),,(a r e a r -=πϕθψ,求:(1)r 的平均值;(2)势能re 2-的平均值;(3)最可几半径; (4)动能的平均值;(5)动量的几率分布函数。
解:(1)ϕθθπτϕθψππd rd d r re a d r r r a r sin 1),,(0220/23020⎰⎰⎰⎰∞-==⎰∞-=0/233004dr a r a a r04030232!34a a a =⎪⎪⎭⎫⎝⎛=2203020/232020/232202/2322214 4 sin sin 1)()2(000a e a a e drr ea e d drd r e a e d drd r e ra e r e U a r a r a r -=⎪⎪⎭⎫ ⎝⎛-=-=-=-=-=⎰⎰⎰⎰⎰⎰⎰∞-∞-∞-ππππϕθθπϕθθπ(3)电子出现在r+dr 球壳内出现的几率为 ⎰⎰=ππϕθθϕθψω02022 sin )],,([)(d drd r r dr r dr r e a a r 2/23004-=2/23004)(r e a r a r -=ω 0/2030)22(4)(a r re r a a dr r d --=ω令 0321 , ,0 0)(a r r r drr d =∞==⇒=,ω 当0)( ,0 21=∞==r r r ω时,为几率最小位置/22203022)482(4)(a r e r a r a a dr r d -+-=ω08)(230220<-=-=e a dr r d a r ω ∴ 0a r =是最可几半径。
第三章: 一维定态问题[1]对于无限深势阱中运动的粒子(见图3-1)证明2a x = )()(22226112πn a x x -=-并证明当∞→n 时上述结果与经典结论一致。
[解]写出归一化波函数:()axn a x n πsin2=ψ (1) 先计算坐标平均值:xdx axn a xdx a x n a xdx x a aa)(⎰⎰⎰-==ψ=02022cos 11sin 2ππ利用公式:2sin cos sin ppxp px x pxdx x +-=⎰ (2) 得2cos sin cos ppxp px x pxdx x +-=⎰ (3) 22cos 22sin 221022aa x n n a a x n x n a x a x a=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=ππππ 计算均方根值用()x x x x x ,)(222-=-以知,可计算2xdx ax n x a dx a x n x a dx x x a a)(⎰⎰⎰-==ψ=022222022cos 11sin 2ππ利用公式px ppx x p px x p pxdx x sin 1cos 2sin 1cos 3222-+=⎰ (5) aa x n x n a a x n n a x n a x a x 0222222cos222sin 22311πππππ⋅⎪⎭⎫⎝⎛-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=222223πn a a -= ()22222222223⎪⎭⎫ ⎝⎛--=-=-a n a a x x x x π)(2222212πn a a -=(6) 在经典力学的一维无限深势阱问题中,因粒子局限在(0,a )范围中运动,各点的几率密度看作相同,由于总几率是1,几率密度a1=ω。
210a xdx a xdx x aa ===⎰⎰ω 312202a dx x a x a==⎰()22222222223⎪⎭⎫⎝⎛--=-=-a n a a x x x x π)(故当∞→n 时二者相一致。