2-6 一维无限深方势阱
- 格式:pdf
- 大小:707.90 KB
- 文档页数:7
一维无限深方势阱的能量班级:姓名:学号:一维无限深方势阱的能量一、 引言:222220202()d E x d m dx d U x E x d ψ⎧-ψ=ψ<<⎪⎪⎨⎪-ψ+=ψ≥⎪ (1) (2)9/10m-020406080100120140160文案编辑词条B 添加义项?文案,原指放书的桌子,后来指在桌子上写字的人。
现在指的是公司或企业中从事文字工作的职位,就是以文字来表现已经制定的创意策略。
文案它不同于设计师用画面或其他手段的表现手法,它是一个与广告创意先后相继的表现的过程、发展的过程、深化的过程,多存在于广告公司,企业宣传,新闻策划等。
基本信息中文名称文案外文名称Copy目录1发展历程2主要工作3分类构成4基本要求5工作范围6文案写法7实际应用折叠编辑本段发展历程汉字"文案"(wén àn)是指古代官衙中掌管档案、负责起草文书的幕友,亦指官署中的公文、书信等;在现代,文案的称呼主要用在商业领域,其意义与中国古代所说的文案是有区别的。
在中国古代,文案亦作" 文按"。
公文案卷。
《北堂书钞》卷六八引《汉杂事》:"先是公府掾多不视事,但以文案为务。
"《晋书·桓温传》:"机务不可停废,常行文按宜为限日。
" 唐戴叔伦《答崔载华》诗:"文案日成堆,愁眉拽不开。
"《资治通鉴·晋孝武帝太元十四年》:"诸曹皆得良吏以掌文按。
"《花月痕》第五一回:" 荷生觉得自己是替他掌文案。
"旧时衙门里草拟文牍、掌管档案的幕僚,其地位比一般属吏高。
《老残游记》第四回:"像你老这样抚台央出文案老爷来请进去谈谈,这面子有多大!"夏衍《秋瑾传》序幕:"将这阮财富带回衙门去,要文案给他补一份状子。
"文案音译文案英文:copywriter、copy、copywriting文案拼音:wén àn现代文案的概念:文案来源于广告行业,是"广告文案"的简称,由copy writer翻译而来。
一维无限深方势阱中的能量本征态1. 引言在量子力学中,一维无限深方势阱是一个经典的问题。
研究一维无限深方势阱中的能量本征态,可以帮助我们更好地理解量子力学中的基本概念和原理。
通过对这一问题的深入探讨,我们可以揭示能量本征态的性质、数学描述以及物理意义,从而为我们理解更为复杂系统的量子行为奠定基础。
2. 能量本征态的概念能量本征态是指在某一势场中,系统的波函数满足薛定谔方程,并且具有确定的能量值。
在一维无限深方势阱中,系统的势能在有限区间内为无穷大,而在无限远处为零。
在区间内,粒子的动能足够克服势能,所以能量本征态中的波函数不为零,在无穷远处趋于零。
3. 数学描述对于一维无限深方势阱,我们可以通过薛定谔方程来描述能量本征态。
薛定谔方程可以写作:\[ -\frac{\hbar^2}{2m} \frac{d^2 \psi(x)}{dx^2} = E\psi(x) \] 其中 \( E \) 为能量本征值,\( \psi(x) \) 为能量本征态的波函数,\( m \) 为粒子的质量,\( \hbar \) 为约化普朗克常数。
在一维无限深方势阱中,我们可以通过求解该薛定谔方程得到能量本征态的波函数形式和能量值。
4. 能量本征态的求解与性质通过求解一维无限深方势阱中的薛定谔方程,我们可以得到一系列的能量本征态。
这些能量本征态之间呈现离散的能级,且能级间隔相等。
这一性质恰好符合了量子力学中的能量量子化条件,从而验证了能量本征态的物理意义。
5. 主题文字的再次提及通过以上对能量本征态的深入讨论,我们可以看到,一维无限深方势阱中的能量本征态不仅是一个重要的量子力学问题,更是我们理解量子力学基本原理的重要工具之一。
能量本征态的性质和数学描述为我们提供了在量子力学中理解和描述复杂系统的基础。
6. 总结与回顾通过本文对一维无限深方势阱中的能量本征态的全面评估,我们不仅了解了能量本征态的基本概念和数学表达,更深入地理解了能量本征态的物理意义。
一维无限深势阱粒子能量的可能测量值和相应的几率一维无限深势阱粒子能量的可能测量值和相应的几率在量子力学中,一维无限深势阱是一个经典的模型系统,用于研究粒子在受限空间内的性质和行为。
其中,粒子的能量是一个非常重要的物理量,其可能的测量值和相应的几率分布是量子力学中的基本课题之一。
在本文中,我们将深入探讨一维无限深势阱粒子能量的可能测量值和相应的几率,并从简到繁地进行全面评估,帮助读者更深入地理解这一主题。
1. 一维无限深势阱的基本概念在一维无限深势阱中,粒子被限制在一个无限深的势阱内运动,即在势阱内能量为负无穷,在势阱外能量为正无穷。
这样的势阱能够构建一个简单而理想化的量子力学模型,便于对粒子的性质进行研究。
2. 粒子在一维无限深势阱中的波函数和能量本征态根据量子力学的基本原理,粒子在一维无限深势阱中的波函数可以用薛定谔方程进行描述。
解出薛定谔方程后,可以得到粒子的能量本征态和对应的波函数表达式,这些能量本征态对应着粒子可能的能量。
3. 能量的可能测量值和相应的几率分布在量子力学中,能量的测量值是一个物理量的可能取值,其对应的几率分布描述了在测量中可能得到某个值的概率。
对于粒子在一维无限深势阱中的能量,我们可以通过对波函数进行归一化处理,得到能量的可能测量值和相应的几率分布。
这些可能的测量值和几率分布将帮助我们理解粒子在势阱内的能量分布规律。
4. 总结与回顾通过对一维无限深势阱粒子能量的可能测量值和相应的几率进行全面评估,我们可以更深入地理解量子力学中的基本概念和原理。
这也有助于我们在实际研究或应用中更灵活地处理粒子能量的测量和分布问题。
个人观点和理解:量子力学中的一维无限深势阱模型是一个简单而重要的系统,通过对其粒子能量的可能测量值和相应的几率进行深入研究,我们可以更好地理解量子世界中的奇妙规律。
对于我而言,通过撰写本文并深入思考这一主题,我对量子力学中的能量测量和分布问题有了更全面的认识,并且能够更好地应用于我的研究和工作中。
55§2.6一维无限深势阱(Potential Well )(理想模型)重点:一维无限深势阱中粒子运动的求解难点:对结果的理解实际模型:金属中电子的运动,不计电子间的相互碰撞,也不考虑周期排列的金属离子对它们的作用。
一、写出本征问题 势场为:⎩⎨⎧≥∞<=a x ,a x ,0)x (U 区域I(阱内,a x <)方程为: )x (E )x (dx d 2I I 222ψ=ψμ−h (1) 区域II、III(阱外,a x ≥)方程为: )x (E )x ()U dxd 2()III (II )III (II 0222ψ=ψ+μ−h (2) 其中∞=0U 。
波函数的边界条件是:)a ()a (II I ψ=ψ,)a ()a (III I −ψ=−ψ (3)二、求解本征方程 我们令2E 2h μ=α, 20)E U (2'h−μ=α (4) 则:)x (E )x (dx d 2I I 222ψ=ψμ−h 的解为: x i x i I Be Ae )x (αα−+=ψ a x <(5)56 )x (E )x ()U dx d 2()III (II )III (II 0222ψ=ψ+μ−h 的解为:x 'x'II e 'B e 'A )x (αα−+=ψ a x ≥ (6)x 'x 'III e ''B e ''A )x (αα−+=ψ a x −≤ (7) 由(6)-(7)式和波函数的有限性知: 0'B ,0''A ==,即:x 'II e 'A )x (α−=ψ a x ≥x 'III e ''B )x (α=ψ a x −≤又由于∞=0U ,则:∞=−μ=α20)E U (2'h于是:0)x ()x (III II =ψ=ψ (8) 而)a ()a (II I ψ=ψ,)a ()a (III I −ψ=−ψ;x i xi I Be Ae )x (αα−+=ψ则:⎩⎨⎧=+=+α−ααα−0Be Ae 0Be Ae a i a i ai a i (9)于是A、B 不能全为零的充分必要条件为: 0e e e e a i a i ai ai =α−ααα−, 即:0)a 2sin(=α 解之得:a 2n π=α,,....2,1,0n ±±= (10)将其代入到⎩⎨⎧=+=+α−ααα−0Be Ae 0Be Ae a i a i a i ai ,得:0Be Ae 2/in 2/in =+ππ−即:B )1(A 1n +−=代入x i x i I Be Ae )x (αα−+=ψ中,得:57 ⎪⎪⎩⎪⎪⎨⎧=π=π=ψ,..5,3,1n ,x a 2n cos D ,...6,4,2n ,x a 2n sin C )x (I a x < (11)其中0n =,()0x =Ψ为平凡解,无意义;,...2,1n −−=不给出新的解。
一维无限深方势阱中粒子动量概率分布引出的问题在量子力学中,无限深方势阱问题是一个简化理想化的问题。
无限正方形势阱是有限大小的正方形势阱。
井内电势为0,井外电势无穷大。
在阱中,粒子可以不受任何力地自由移动。
但是阱壁无限高,粒子完全被约束在阱里。
通过 schr\ddot{o}dinger 方程的解答,明确地呈现出某些量子行为,这些量子行为与实验的结果相符合,然而,与经典力学的理论预测有很大的冲突。
特别令人注目的是,这些量子行为是自然地从边界条件产生的,而非人为勉强添加产生的。
这解答干净利落地展示出,任何类似波的物理系统,自然地会产生量子行为;无限深方势阱问题的粒子的量子行为包括:1.能量的量子化:粒子量子态的本征函数,伴随的能量不是任意的,而只是离散能级谱中的一个能级。
2.基态能量:一个粒子允许的最小能级,称为基态能量,不为零。
3.节点:与经典力学相反,薛定谔方程预言了节点的存在。
这意味着在陷阱的某个地方,发现粒子的概率为零。
这个问题再简单,也能因为能完整分析其薛定谔方程,而导致对量子力学更深入的理解。
其实这个问题也很重要。
无限深正方形势阱问题可以用来模拟许多真实的物理系统,例如直的极细纳米线中导电电子的量子行为。
为了简化问题,本文从一维问题出发,讨论了粒子只在一维空间中运动的问题。
一个粒子束缚于一维无限深方势阱内,阱宽为 l 。
势阱内位势为0,势阱外位势为无限大。
粒子只能移动于束缚的方向( x 方向)。
一维无限深方势阱的本征函数 \psi_{n} 于本征值 e_{n} 分别为\psi_{n}=\sqrt{\frac{2}{l}}sin(\frac{n\pi x}{l})e_{n}=\frac{n^2 h^2}{8ml^2}其中, n 是正值的整数, h 是普朗克常数, m 是粒子质量。
一维不含时薛定谔方程可以表达为-\frac{\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2}+v(x)\psi(x)= e\psi(x)其中, \psi(x) 是复值的、不含时的波函数, v(x) 是跟位置有关的位势, e 是正值的能量。
一维无限深方势阱中势阱中粒子的能级公式推导一维无限深方势阱是量子力学教学中常见的模型之一。
在这个模型中,粒子被限制在一个长度为L的势阱中运动,势阱的势能在阱内为零,而在阱外则无限大。
研究一维无限深方势阱中粒子的能级公式推导,可以帮助我们更深入地理解量子力学中的基本概念和数学工具。
下面我将按照深度和广度的要求,从简单的物理概念和数学原理开始,逐步推导一维无限深方势阱中粒子的能级公式,并带有个人的观点和理解。
一、基本概念和数学工具1.1 势阱势阱是一种常见的量子力学模型,它可以用来描述粒子在受限空间中的运动。
在一维无限深方势阱中,势能在阱内为零,而在阱外为无限大,这意味着粒子在阱内具有确定的能量,而在阱外无法存在。
1.2 薛定谔方程薛定谔方程是描述量子力学中粒子运动的基本方程。
对于一维无限深方势阱而言,薛定谔方程可以简化为一维定态薛定谔方程:\[ -\frac{\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2} = E\psi(x) \]其中,ψ(x)是粒子的波函数,m是粒子的质量,E是粒子的能量,ħ是普朗克常数。
二、能级公式的推导2.1 边界条件在一维无限深方势阱中,粒子受到势阱两侧的限制,因此波函数在势阱边界处为零。
这意味着在x=0和x=L处,波函数满足边界条件:\[ \psi(0) = 0 \]\[ \psi(L) = 0 \]2.2 波函数的解根据边界条件,我们可以求解一维定态薛定谔方程得到波函数的解。
波函数的解具有以下形式:\[ \psi_n(x) = \sqrt{\frac{2}{L}}\sin(\frac{n\pi x}{L}) \]其中,n为能级量子数。
2.3 能级公式将波函数的解代入一维定态薛定谔方程中,可以得到粒子的能级公式:\[ E_n = \frac{n^2\pi^2\hbar^2}{2mL^2} \]其中,En为粒子的能量,n为能级量子数。
三、个人观点和理解在推导一维无限深方势阱中粒子的能级公式过程中,我们利用了量子力学基本的数学工具和物理概念,如薛定谔方程、波函数和边界条件。
55§2.6一维无限深势阱(Potential Well )(理想模型)重点:一维无限深势阱中粒子运动的求解难点:对结果的理解实际模型:金属中电子的运动,不计电子间的相互碰撞,也不考虑周期排列的金属离子对它们的作用。
一、写出本征问题 势场为:⎩⎨⎧≥∞<=a x ,a x ,0)x (U 区域I(阱内,a x <)方程为: )x (E )x (dx d 2I I 222ψ=ψμ−h (1) 区域II、III(阱外,a x ≥)方程为: )x (E )x ()U dxd 2()III (II )III (II 0222ψ=ψ+μ−h (2) 其中∞=0U 。
波函数的边界条件是:)a ()a (II I ψ=ψ,)a ()a (III I −ψ=−ψ (3)二、求解本征方程 我们令2E 2h μ=α, 20)E U (2'h−μ=α (4) 则:)x (E )x (dx d 2I I 222ψ=ψμ−h 的解为: x i x i I Be Ae )x (αα−+=ψ a x <(5)56 )x (E )x ()U dx d 2()III (II )III (II 0222ψ=ψ+μ−h 的解为:x 'x'II e 'B e 'A )x (αα−+=ψ a x ≥ (6)x 'x 'III e ''B e ''A )x (αα−+=ψ a x −≤ (7) 由(6)-(7)式和波函数的有限性知: 0'B ,0''A ==,即:x 'II e 'A )x (α−=ψ a x ≥x 'III e ''B )x (α=ψ a x −≤又由于∞=0U ,则:∞=−μ=α20)E U (2'h于是:0)x ()x (III II =ψ=ψ (8) 而)a ()a (II I ψ=ψ,)a ()a (III I −ψ=−ψ;x i xi I Be Ae )x (αα−+=ψ则:⎩⎨⎧=+=+α−ααα−0Be Ae 0Be Ae a i a i ai a i (9)于是A、B 不能全为零的充分必要条件为: 0e e e e a i a i ai ai =α−ααα−, 即:0)a 2sin(=α 解之得:a 2n π=α,,....2,1,0n ±±= (10)将其代入到⎩⎨⎧=+=+α−ααα−0Be Ae 0Be Ae a i a i a i ai ,得:0Be Ae 2/in 2/in =+ππ−即:B )1(A 1n +−=代入x i x i I Be Ae )x (αα−+=ψ中,得:57 ⎪⎪⎩⎪⎪⎨⎧=π=π=ψ,..5,3,1n ,x a 2n cos D ,...6,4,2n ,x a 2n sin C )x (I a x < (11)其中0n =,()0x =Ψ为平凡解,无意义;,...2,1n −−=不给出新的解。