第二章一维无限势阱模型
- 格式:ppt
- 大小:354.00 KB
- 文档页数:23
一维无限深势阱定义编辑粒子在一种简单外力场中做一维运动,其势能函数为U(X)=0 (-a<x<a);U(x)=∞ (x≥a或x≤-a)。
由于其函数图形像阱,且势能在一定区域为0,而在此区域外势能为无穷大,所以这种势能分布叫做一维无限深势阱。
实际模型编辑自由电子在一块金属中的运动相当于在势阱中的运动。
在阱内,由于势能为零,粒子受到的总的力为零,其运动是自由的。
在边界上x=0或x=a处,由于势能突然增加到无限大,粒子受到无限大指向阱内的力。
因此,粒子的位置不可能到达0<x<a的范围以外。
一维无限深势阱中粒子运动的波函数编辑一维无限深势阱中粒子运动的波函数为Ψ(x)=√(2/a)·sin(nπx/a) (0<x<a)。
三、一维势阱3.1 一维无限深势阱要使电子脱离金属,需要对它做功,这相当于电子在金属表面处势能突然增大,自由电子在金属内部的运动,可近似比作在无限深势阱的运动。
由于金属是各向同性的,便可简化为电子在一维无限深势阱中的运动。
势能曲线如右图,势能表达式为电子在一维无限深势阱中运动,用经典力学描述和量子力学描述得到了完全不同的结果。
按照经典概念,当外界向它提供能量时,电子可获得此能量而自身能量发生连续变化。
电子在阱内任何位置出现的概率也是相等的。
然而,按照量子力学观点,它的行为却不是这样的。
(1) 定态薛定谔方程的解电子所受的保守力,在边界处电子所受的力无限大,指向阱内,意味着电子不可能越出阱外,由波函数物理意义可知势阱外波函数。
电子在势阱内势能为零,受力为零。
势阱内定态薛定谔方程为令方程变为其解为根据波函数应满足的标准化条件,波函数应在边界x=0和x=a上连续得应用归一化条件求得于是定态波函数为(2) 能量量子化因,合并(23.3.3)式,即得到一维无限深势阱中的电子能量上式表明:电子的能量不能连续地取任意值,只能取分立值,即能量是量子化的,可形象地称为处于相应的能级(如右图所示)。
一维无限深方势阱中势阱中粒子的能级公式推导一维无限深方势阱是量子力学教学中常见的模型之一。
在这个模型中,粒子被限制在一个长度为L的势阱中运动,势阱的势能在阱内为零,而在阱外则无限大。
研究一维无限深方势阱中粒子的能级公式推导,可以帮助我们更深入地理解量子力学中的基本概念和数学工具。
下面我将按照深度和广度的要求,从简单的物理概念和数学原理开始,逐步推导一维无限深方势阱中粒子的能级公式,并带有个人的观点和理解。
一、基本概念和数学工具1.1 势阱势阱是一种常见的量子力学模型,它可以用来描述粒子在受限空间中的运动。
在一维无限深方势阱中,势能在阱内为零,而在阱外为无限大,这意味着粒子在阱内具有确定的能量,而在阱外无法存在。
1.2 薛定谔方程薛定谔方程是描述量子力学中粒子运动的基本方程。
对于一维无限深方势阱而言,薛定谔方程可以简化为一维定态薛定谔方程:\[ -\frac{\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2} = E\psi(x) \]其中,ψ(x)是粒子的波函数,m是粒子的质量,E是粒子的能量,ħ是普朗克常数。
二、能级公式的推导2.1 边界条件在一维无限深方势阱中,粒子受到势阱两侧的限制,因此波函数在势阱边界处为零。
这意味着在x=0和x=L处,波函数满足边界条件:\[ \psi(0) = 0 \]\[ \psi(L) = 0 \]2.2 波函数的解根据边界条件,我们可以求解一维定态薛定谔方程得到波函数的解。
波函数的解具有以下形式:\[ \psi_n(x) = \sqrt{\frac{2}{L}}\sin(\frac{n\pi x}{L}) \]其中,n为能级量子数。
2.3 能级公式将波函数的解代入一维定态薛定谔方程中,可以得到粒子的能级公式:\[ E_n = \frac{n^2\pi^2\hbar^2}{2mL^2} \]其中,En为粒子的能量,n为能级量子数。
三、个人观点和理解在推导一维无限深方势阱中粒子的能级公式过程中,我们利用了量子力学基本的数学工具和物理概念,如薛定谔方程、波函数和边界条件。