矩阵的初等行变换与初等矩阵知识分享
- 格式:ppt
- 大小:898.50 KB
- 文档页数:4
§2.2 矩阵的初等变换与初等矩阵1.矩阵的初等变换定义2.1 下列三种变换称为矩阵的初等列变换: (1)交换矩阵的第,i j 列,用i j c c ↔记之; (2)用非零数k 乘矩阵的第i 列,用i kc 记之;(3)把矩阵的第i 列的k 倍加到第j 列,用j i c kc +记之。
矩阵的初等行变换与列变换,统称为矩阵的初等变换。
如果矩阵A 经过有限次初等(行,列)变换,化为矩阵B ,就称矩阵A 与B (行,列)等价,记作~A B 。
矩阵的等价具有以下性质: (1)反身性 ~A A ;(2)对称性 如果~A B ,则~B A ;(3)传递性 如果~A B ,~B C ,则~A C 。
利用初等行变换,将方程组的增广矩阵化为行最简形,从而得出方程组的解。
可见,讨论矩阵的某种结构简单、而形式特定的等价矩阵,在理论和实际应用上都是必要而有价值的。
对矩阵的行最简形再施行初等列变换,可得到一种结构最为简单的形式。
以§A 为例,矩阵A 的行最简形为11610039210103910001300000⎛⎫⎪⎪⎪-⎪ ⎪- ⎪⎪⎝⎭,再经初等列变换344151425253116211,,,,,39393c c c c c c c c c c c c ↔---++化为10000010000010000000⎛⎫ ⎪=⎪ ⎪ ⎪⎝⎭F 。
称矩阵F 为矩阵A 的等价标准形。
定理 2.1 矩阵()ij m n a ⨯=A 经过有限次初等变换可化为如下的等价标准形:()()()()rr n r m r r m r n r ⨯--⨯-⨯-⎛⎫=⎪⎝⎭I O F O O ,其中下方及右边的零行,零列可能空缺。
由行列式的性质可知,行列式不为零的方阵,其等价矩阵的行列式也不为零。
由此可得以下结论:可逆矩阵的等价矩阵也为可逆矩阵;可逆矩阵的行最简形就是等价标准形,且一定是单位矩阵。
2.初等矩阵定义2.2 由单位矩阵经一次初等变换而得的矩阵称为初等矩阵。
初等行变换和初等矩阵的关系初等行变换是矩阵运算中的一种重要操作,而初等矩阵是初等行变换的矩阵表示形式。
初等行变换和初等矩阵之间存在着密切的关系,它们是线性代数中不可或缺的概念。
初等行变换是指对矩阵的行进行一系列的操作,包括交换两行、某一行乘以一个非零常数、某一行乘以一个非零常数后加到另一行上。
这些操作可以改变矩阵的形式,但不会改变它的行空间和列空间。
初等行变换的目的是简化矩阵的计算和处理,使得矩阵的求解更加方便。
而初等矩阵是由单位矩阵经过一次初等行变换得到的矩阵。
初等矩阵的定义是一个主对角线上全为1,其余元素全为0的方阵。
初等矩阵是一种特殊的矩阵,它具有很多重要的性质和应用。
初等行变换和初等矩阵之间的关系体现在以下几个方面:1. 初等矩阵可以表示初等行变换:对于给定的矩阵A,经过一次初等行变换可以得到一个新矩阵B,那么存在一个与初等行变换对应的初等矩阵P,使得B=PA。
这意味着对矩阵进行初等行变换等价于左乘一个初等矩阵。
2. 初等矩阵的乘积仍然是初等矩阵:对于两个初等矩阵P和Q,它们的乘积PQ仍然是一个初等矩阵。
这是因为初等矩阵具有特殊的形式,满足乘法的封闭性。
3. 初等矩阵是可逆的:初等矩阵是方阵,且行列式不为零,因此是可逆的。
对于每一个初等矩阵P,存在一个逆矩阵P^-1,使得PP^-1=P^-1P=I,其中I是单位矩阵。
4. 初等矩阵的逆仍然是一个初等矩阵:对于一个初等矩阵P,它的逆矩阵P^-1仍然是一个初等矩阵。
这是因为初等矩阵的定义决定了它的逆矩阵的形式。
初等行变换和初等矩阵在线性代数中有着重要的应用。
它们可以用于求解线性方程组、求解矩阵的秩、求矩阵的逆等问题。
通过初等行变换和初等矩阵,可以将一个复杂的矩阵化简为一个更简单的形式,从而简化了问题的求解过程。
初等行变换和初等矩阵是线性代数中的重要概念,它们之间存在着紧密的联系。
初等行变换通过对矩阵的行进行一系列操作,而初等矩阵则是初等行变换的矩阵表示形式。
矩阵的初等变换及应用的总结矩阵的初等变换是线性代数中非常重要的一个概念,它可以通过对矩阵的行或列进行一系列的操作,得到新的矩阵。
初等变换主要包括三种:行交换、行倍乘和行倍加。
在实际应用中,初等变换可以用来求解线性方程组、计算矩阵的逆和秩等。
一、行交换:行交换是将矩阵中的两行进行调换。
具体操作是互换两行的顺序,即将矩阵的第i行与第j行进行互换。
这个操作可以用一个初等矩阵来表示,即单位矩阵中将第i行和第j行进行交换。
应用:在线性方程组的求解中,我们可以通过行交换将系数矩阵的行变换成一个上三角矩阵,从而方便进行后续的计算。
二、行倍乘:行倍乘是将矩阵中的其中一行的所有元素同时乘以一个非零常数k。
具体操作是将矩阵的第i行的每个元素都乘以k。
这个操作可以用一个初等矩阵来表示,即在单位矩阵的第i行的对角线位置上放置k。
应用:行倍乘在求解线性方程组时,可以用来将一些方程的系数标准化,使得系数矩阵变为一个拥有单位元的对角矩阵,从而简化方程组的求解。
三、行倍加:行倍加是将矩阵中的其中一行的每个元素都乘以一个非零常数k,并加到另一行的对应元素上。
具体操作是将矩阵的第i行的每个元素都乘以k,然后加到矩阵的第j行的对应元素上。
这个操作可以用一个初等矩阵来表示,即在单位矩阵的第j行的第i列上放置k。
应用:行倍加在线性方程组的求解中,可以用来将一些方程的k倍加到另一个方程上,从而使一些方程的一些变量消失,达到消元的目的。
综上所述,矩阵的初等变换是通过对矩阵的行或列进行一系列的操作,得到新的矩阵。
初等变换主要包括行交换、行倍乘和行倍加。
在实际应用中,初等变换可以用来求解线性方程组、计算矩阵的逆和秩等。
在线性方程组的求解中,通过矩阵的初等变换可以将系数矩阵变为一个上三角矩阵,从而方便后续的计算。
同时,可以通过初等变换将方程组化为最简形式,从而得到方程组的解。
在计算矩阵的逆时,可以通过初等变换将原矩阵左边加上单位矩阵,并经过一系列的操作将原矩阵化为单位矩阵,从而得到矩阵的逆。
矩阵的初等变换矩阵的初等变换是指矩阵的元素可以通过运用一系列简单的操作进行变换,而不改变矩阵的表达式形式。
它主要有三种:行变换、列变换和对角变换。
1、行变换行变换就是对矩阵进行以下操作:(1)把矩阵的一行或者多行乘以一定的非零常数;(2)把矩阵的一行或者多行加上矩阵的另一行乘以一定的非零常数;(3)交换矩阵的两行。
2、列变换列变换就是对矩阵进行以下操作:(1)把矩阵的一列或者多列乘以一定的非零常数;(2)把矩阵的一列或者多列加上矩阵的另一列乘以一定的非零常数;(3)交换矩阵的两列。
3、对角变换对角变换就是把矩阵的一行或者一列乘以一定的非零常数,改变的只有矩阵的对角线上的元素。
二、矩阵的初等变换的作用矩阵的初等变换在数学中被用来解方程组,对矩阵进行相应的变换,可以使矩阵变得简单易懂,方便求解。
1、消元消元是指用初等变换将不完全行列式变为下三角形式,也就是将原有的矩阵通过初等变换转化为更简单易懂的形式。
消元可以解决线性方程组,求解使方程组成立的一组解。
2、求逆矩阵求逆矩阵是指找到可以使一个矩阵的乘积等于单位矩阵的矩阵,如果形式方程有唯一解,则可以通过求逆矩阵来求解。
三、矩阵的初等变换的实践1、求解线性方程组例1:求解下列线性方程组x1+x2+x3=22x1+x2+2x3=5x1+2x2+2x3=4通过消元法可以将方程转化为x2+2x3=32x2+4x3=7又因为,x3=3-2x2,于是有x2=1/2x3=7/4因此,原方程的解为:x1=2-x2-x3=2-1/2-7/4=9/4x2=1/2x3=7/42、求逆矩阵例2:求解矩阵A的逆矩阵A=[2 34 5]首先,计算矩阵A的行列式,即|A|=2*5-3*4=-2,所以|A|不等于0,A是可逆矩阵。
计算A的逆矩阵A^(-1),A^(-1)=[5/2 -3/2-2 1]最终A^(-1)=[5/2 -3/2-2 1]四、结论矩阵的初等变换是一种重要的数学工具,它可以利用简单的操作改变矩阵的形式,从而解决一些数学方程,例如求解线性方程组和求逆矩阵。
初等矩阵及初等变换矩阵的初等变换⼜分为矩阵的初等⾏变换和矩阵的初等列变换。
1)初等⾏变换:所谓数域P上矩阵的初等⾏变换是指下列 3 种变换:a. 以P中⼀个⾮零的数k乘矩阵的第i⾏,即为E i(k),那它的逆矩阵⾃然就是E i(1 k)。
b. 把矩阵第i⾏的k倍加到第j⾏,这⾥k是P中的任意⼀个数,记为E ij(k),要想把第j⾏变回去,⾃然得减掉第i⾏的k倍,即E ij(−k)。
c. 互换矩阵中第i⾏和第j⾏,记为E ij,逆矩阵为E ij,这是很显然的,就是再交换⼀次就变回去了。
2)初等列变换:所谓数域P上矩阵的初等列变换是指下列 3 种变换:a. 以P中⼀个⾮零的数k乘矩阵的第i列,记为E i(k)。
b. 把矩阵的第i列的k倍加到第j列,这⾥k是P中的任意⼀个数,记为E ij(k)。
c. 互换矩阵中第i列和第j列,记为E ij。
初等矩阵:由单位矩阵E经过⼀次初等变换得到的矩阵称为初等矩阵。
矩阵经过初等变换后不会改变它原来的秩,因为初等矩阵是满秩的⽅阵,所以它是可逆的,如PA=B于是有r(B)≤r(A)因为P可逆,所以有A=P−1B于是r(A)≤r(B)所以r(A)=r(B)注:如果不了解这个过程,可以先去阅读。
左⾏右列定理:初等矩阵P左乘或(右乘) A得到PA(AP),就是对A做了⼀次与P相同的初等⾏(列)变换。
即要使矩阵A做出和初等阵相同的列变换,则A右乘P。
要使矩阵A做出和初等阵相同的⾏变换,则A左乘P。
为什么是这样的呢?可以阅读。
其实就是从向量⾓度来理解矩阵乘法,对于矩阵相乘AB=C,我们可以这样理解:1)矩阵C的每⼀个⾏向量是矩阵B的⾏向量的线性组合,组合的系数是矩阵A的每⼀⾏。
2)矩阵C的每⼀个列向量是矩阵A的列向量的线性组合,组合的系数是矩阵B的每⼀列。
Processing math: 100%。
§2。
5 矩阵的初等变换和初等矩阵矩阵的初等变换源于线性方程组消元过程中的同解变换,它在将矩阵变换为简单形式、解线性方程组、求矩阵的逆阵、解矩阵方程以及研究矩阵的秩等方面起着重要的作用。
一 矩阵的初等变换和矩阵等价定义2。
10 设A 是矩阵,下面三种变换称为矩阵的初等行变换: n m ×(1) 交换A 的第行和第行的位置,记为i j j i r r ↔; A 的第i 行各元素,记为;i kr (2) 用非零常数乘以k 的第i 行各元素的倍加到第行对应元素,记为A j k i j kr r +。
(3) 将 若把定义2。
10中的行改为列,便得到三种对应的初等列变换,记号分别为;;。
j i c c ↔i kc i j kc c + 矩阵的初等行(列)变换统称为矩阵的初等变换。
例如⎯⎯→⎯⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−↔31132100101792r r ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−179200101321⎯⎯→⎯+242c c ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−177********21值得注意的是,初等变换将一个矩阵变成了另一个矩阵,在一般情况下 ,变换前后的两个矩阵并不相等,因此进行初等变换只能用来表示,而不能用等号。
另外,矩阵的初等变换可以逆向操作,即若矩阵→i r k1A B B 经过、i kr i j kc c +变换成了矩阵,那么对施以及,就可以将矩阵B A i j kc c −。
复原为矩阵A B A B 定义2。
11 如果矩阵经过有限次初等变换后化为矩阵,则称等价于矩阵,简记为B A ~。
由定义可以得到以下关于矩阵等价的一些简单性质:A A ~(1) 反身性:;(2) 对称性:则,~B A A B ~;B A ~且,则。
C B ~C A ~(3) 传递性: 定理2。
3 任意矩阵()nm ija A ×=都与形如的矩阵等价。
矩阵称为矩阵⎟⎟⎠⎞⎜⎜⎝⎛000rE ⎟⎟⎠⎞⎜⎜⎝⎛000r E ),min(1n m r ≤≤A 的标准形。
矩阵的初等变换知识点总结矩阵的初等变换是矩阵运算中的一种基本操作,其目的是通过一系列变换使得矩阵达到特定的形式,从而方便后续的运算和求解。
初等变换包括三种类型:行交换、行倍乘以非零常数和某一行加上另一行的若干倍。
下面将对这三种初等变换进行详细介绍。
一、行交换行交换是指将矩阵中两行互相交换顺序。
具体来说,如果有一个 $m \times n$ 的矩阵 $A$,则可以通过以下方式进行行交换:1. 将第 $i$ 行和第 $j$ 行互相交换位置。
$$\begin{bmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\a_{21} & a_{22} & \cdots & a_{2n} \\\vdots & \vdots & \ddots & \vdots \\a_{i1} & a_{i2} & \cdots & a_{in} \\\vdots & \vdots & \ddots & \vdots \\a_{j1} & a_{j2} & \cdots & a_{jn} \\\vdots & \vdots & \ddots& \vdots\\a_{m1} &a_{m2}&\cdots&a_{mn}\end{bmatrix}\rightarrow\begin{bmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\a_{21} & a_{22} & \cdots & a_{2n} \\\vdots & \vdots & \ddots& \vdots\\a_{j1} &a_{j2}&\cdots&a_{jn}\\\vdots & \vdots & \ddots& \vdots\\a_{i1} &a_{i2}&\cdots&a_{in}\\\vdots&\vdots&\ddots&\vdots\\a_{m1}&a_{m2}&\cdots&a_{mn}\end{bmatrix}$$行交换可以用来将矩阵化为阶梯形或最简形式,方便进行高斯消元法等运算。
矩阵的初等变换及应用内容摘要:矩阵是线性代数的重要研究对象。
矩阵初等变换是线性代数中一种重要的计算工具,利用矩阵初等变换,可以求行列式的值,求解线性方程组,求矩阵的秩,确定向量组向量间的线性关系。
一矩阵的概念定义:由于m×n个数aij(i=1,2,….,m;j=1,2,….,n)排成的m行n列的数表,称为m行n列,简称m×n矩阵二矩阵初等变换的概念定义:矩阵的初等行变换与初等列变换,统称为初等变换1.初等行变换矩阵的下列三种变换称为矩阵的初等行变换:(1) 交换矩阵的两行(交换两行,记作);(2) 以一个非零的数乘矩阵的某一行(第行乘数,记作);(3) 把矩阵的某一行的倍加到另一行(第行乘加到行,记为).1.初等列变换把上述中“行”变为“列”即得矩阵的初等列变换3 ,如果矩阵A经过有限次初等变换变成矩阵B,就称矩阵A 与矩阵B等价,记作A~B矩阵之间的等价关系具有下列基本性质:(1) 反身性;(2) 对称性若,则;(3) 传递性若,,则.三矩阵初等变换的应用1.利用初等变换化矩阵为标准形定理:任意一个m× n矩阵A,总可以经过初等变换把它化为标准形2.利用初等变换求逆矩阵求n阶方阵的逆矩阵:即对n×2n矩阵(A¦E)施行初等行变换,当把左边的方阵A变成单位矩阵E的同时,右边的单位矩阵也就变成了方阵A的逆矩阵A^(-1)即(A|E)经过初等变换得到(E|A^(-1))这种计算格式也可以用来判断A是否可逆,当我们将A化为行阶梯形矩阵时,若其中的非零行的个数等于n时,则A可逆,否则A不可逆。
设矩阵可逆,则求解矩阵方程等价于求矩阵,为此,可采用类似初等行变换求矩阵的逆的方法,构造矩阵,对其施以初等行变换将矩阵化为单位矩阵,则上述初等行变换同时也将其中的单位矩阵化为,即.这样就给出了用初等行变换求解矩阵方程的方法.同理, 求解矩阵方程等价于计算矩阵亦可利用初等列变换求矩阵. 即.3.利用矩阵初等变换求矩阵的秩矩阵的秩的概念是讨论向量组的线性相关性、深入研究线性方程组等问题的重要工具.从上节已看到,矩阵可经初等行变换化为行阶梯形矩阵,且行阶梯形矩阵所含非零行的行数是唯一确定的, 这个数实质上就是矩阵的“秩”,鉴于这个数的唯一性尚未证明,在本节中,我们首先利用行列式来定义矩阵的秩,然后给出利用初等变换求矩阵的秩的方法.定理:矩阵的初等变换不改变矩阵的秩,即若A~B则R(A)=R(B)为求矩阵的秩,只要把矩阵用初等行变换变成阶梯矩阵解体矩阵中非零行的行数即是该矩阵的秩利用矩阵值得概念,能够讨论线性方程组有解的条件,然后通过研究向量组的线性相关性,向量组的秩等重要概念,讨论线性方程组的结构。