柯西不等式各种形式的证明及其应用演示版.doc
- 格式:doc
- 大小:486.50 KB
- 文档页数:11
柯西不等式各种形式的证明及其应用(一)柯西不等式各种形式的证明及其应用1. 柯西不等式的原始形式证明•柯西不等式的原始形式为:对任意的实数序列a1,a2,...,a n和b1,b2,...,b n,有下列不等式成立:(a1b1+a2b2+...+a n b n)2≤(a12+a22+...+a n2)(b12+b22+...+b n2)•证明思路:1.定义辅助函数f(t)=(a1t+a2t+...+a n t)2−(a12t2+a22t2+...+a n2t2)。
2.利用二次函数的性质证明f(t)≥0,即可得到柯西不等式的原始形式。
2. 柯西不等式的向量形式证明•柯西不等式的向量形式为:对任意的n维向量a=[a1,a2,...,a n]和b=[b1,b2,...,b n],有下列不等式成立:|a⋅b|2≤∥a∥2⋅∥b∥2•证明思路:1.将n维向量a和b表示为列向量形式。
2. 利用矩阵转置、乘法和内积的定义证明不等式成立。
3. 柯西不等式的积分形式证明• 柯西不等式的积分形式为:对任意的可积函数f (x )和g (x ),有下列不等式成立:|∫f b a (x )g (x )dx|2≤∫|f (x )|2b a dx ⋅∫|g (x )|2ba dx• 证明思路:1. 构造辅助函数ℎ(t )=∫(f (t )x +g (t ))2b a dt −∫|f (t )|2badt ⋅∫|g (t )|2b a dt 。
2. 利用积分和函数的性质证明ℎ(t )≥0,即可得到柯西不等式的积分形式。
应用一:线性代数中的向量内积• 柯西不等式可以用于证明向量内积的性质。
• 例如,在证明向量的模长定义中,可以利用柯西不等式证明模长的非负性。
• 另外,柯西不等式也广泛应用于线性代数中的向量正交、投影等问题。
应用二:凸函数的判定• 柯西不等式可以用于判定函数的凸性。
•若函数f(x)在区间[a,b]上满足柯西不等式中的积分形式,即″(x)dx≥0,则f(x)为该区间上的凸函数。
柯西不等式各种形式的证明及其应用1.柯西不等式的证明:(x1,y1) + (x2,y2) + ... + (xn,yn),≤ √(,x1,^2 + ,x2,^2 + ... + ,xn,^2)√(,y1,^2 + ,y2,^2 + ... + ,yn,^2)证明:设向量(x1,x2,...,xn)与(y1,y2,...,yn)的内积为A,则有:A = x1y1 + x2y2 + ... + xnyn考虑不等式(,x1,^2/,A, + ,x2,^2/,A, + ... + ,xn,^2/,A,) * (,y1,^2A + ,y2,^2/,A, + ... + ,yn,^2/,A,) ≥ 1根据乘法交换律,可以将上式化简为:(,x1,^2 + ,x2,^2 + ... + ,xn,^2) * (,y1,^2 + ,y2,^2 + ... + ,yn,^2) ≥ ,A,^2由于A是内积,其绝对值不超过向量的模的乘积,即,A,≤ √(,x1,^2 + ,x2,^2 + ... + ,xn,^2)√(,y1,^2 + ,y2,^2 + ...+ ,yn,^2)将不等式化简可得:(x1,y1) + (x2,y2) + ... + (xn,yn),≤ √(,x1,^2 + ,x2,^2 + ... + ,xn,^2)√(,y1,^2 + ,y2,^2 + ... + ,yn,^2)2.柯西不等式的应用:2.1内积空间中的角度和长度:根据柯西不等式,可以得出两个向量的内积的绝对值小于等于它们的模的乘积,即,A,≤ ,x,y,其中x和y是向量。
从而可以推出内积与向量的模的乘积的乘积的cosine值不超过1,即cosθ ≤ 1,其中θ是x和y之间的角度。
这表明柯西不等式可以用于计算向量的夹角。
2.2线性无关的证明:假设有n个非零向量(x1,x2,...,xn),如果存在n维向量(a1,a2,...,an),使得a1x1 + a2x2 + ... + anx_n = 0,其中a1,a2,...,an不全为零,则称向量组(x1,x2,...,xn)线性相关。
柯西不等式各种形式的证明及其应用(a1b1 + a2b2 + … + anbn),≤ √(a1^2 + a2^2 + … + an^2) * √(b1^2 + b2^2 + … + bn^2)其中a1, a2, …, an和b1, b2, …, bn为实数或者复数。
下面将介绍几种柯西不等式的证明以及其应用。
证明1:使用向量的点乘形式证明柯西不等式。
设有两个n维向量A = (a1, a2, …, an)和B = (b1, b2, …, bn),则根据向量的点乘定义:A·B, = ,a1b1 + a2b2 + … + anbn,≤ ,a1,b1, + ,a2,b2,+ … + ,an,bn根据向量的模的定义,有:A·B,≤ √(a1^2 + a2^2 + … + an^2) * √(b1^2 + b2^2 + …+ bn^2)这就是柯西不等式的一种证明方法。
证明2:使用函数的积分形式证明柯西不等式。
设函数f(x)和g(x)在区间[a,b]上连续,那么根据积分的定义,有:∫[a,b] (f(x)g(x)) dx ≤ √(∫[a,b] (f^2(x)) dx) * √(∫[a,b] (g^2(x)) dx)假设f(x) = 1,g(x) = sqrt(1/x),那么有:∫[1,2] (sqrt(1/x)) dx ≤ √(∫[1,2] (1^2) dx) * √(∫[1,2] (sqrt(1/x))^2 dx)化简得:√(ln 2) ≤ √(∫[1,2] (1/x) dx)继续化简得:√(ln 2) ≤ √(ln 2)这也是柯西不等式的一种证明方法。
应用1:在实数范围内,柯西不等式可以用于证明其他不等式的成立。
例如,可以利用柯西不等式证明三角不等式,即,a+b,≤,a,+,b。
应用2:柯西不等式可以推导出协方差不等式,协方差是一种度量两个变量之间线性关系紧密程度的指标。
根据柯西不等式的形式,对于任意两个随机变量X和Y,有:Cov(X, Y)^2 ≤ Var(X) * Var(Y)其中Cov(X, Y)表示X和Y的协方差,Var(X)和Var(Y)分别表示X和Y的方差。
柯西不等式的证明及相关应用摘要 :柯西不等式是高中数学新课程的一个新增容,也是高中数学的一个重要知识点, 它不仅历史悠久, 形式优美,结构巧妙,也是证明命题、研究最值问题的一个强有力的工具。
关键词 :柯西不等式柯西不等式变形式 最值一、柯西( Cauchy )不等式:a 1b 1 a 2 b 2 a n b n2a 12 a 22a n 2b 12 b 22 b n 2 a i ,b i R, i 1,2 n等号当且仅当 a 1 a 2 a n0 或 b ika i 时成立( k 为常数, i 1,2n )现将它的证明介绍如下:方法 1 证明:构造二次函数f ( x) a x b 2a x b2a x b21122nn= a 12 a 22a n 2 x 2 2 a 1b 1 a 2 b 2a nb n x b 12 b 22b n 2由构造知f x0 恒成立又 Q a 12 a 22 L a n n4 a 1b 1 a 2 b 2a nb n 2 4 a 12 a 22 a n 2 b 12 b 22b n 2即 a 1b 1a 2b 2a nb n2a 12 a 22a n 2b 12 b 22b n 2当且仅当 a i xb i 0 i 1,2n即a1a 2 L a n 时等号成立b 1b 2 b n方法 2证明 :数学归纳法( 1) 当 n 1 时左式 = a 1b 1 22右式 =a 1b 1显然左式 =右式当 n2 时a 12 a 22b 12 b 22a 1b 1 2 a 2 b 22a 12b 22右式a 22b 12222a a bb2 左式a ba b2a b a b1 12 212 1 1 222故 n 1,2时 不等式成立( 2)假设 n k k, k 2 时,不等式成立即 a 1b 1 a 2 b 2 a k b k2a 12 a 22a k 2b 12 b 22b k 2当 b i ma i , m 为常数, i 1,2 k 或 a 1a 2 L a k0 时等号成立设 A= a 12 a 22a k 2B= b 12 b 22b k 2C a 1b 1 a 2b 2 L a k b kAB C 2则 A a k21 B b k21 AB Ab k21 Ba k21 a k21b k21C 2 2Ca k 1b k 1 a k2 1b k2 1C 2ak 1bk 1a12 a22 L a k2 a k2 b12 b22 L b k2 b k21 a1b1 21 a2b2Lakbkak 1bk 1当b i ma i,m为常数, i 1,2 k 1 或 a1 a2 a k 1时等号成立即n k 1时不等式成立综合( 1)(2)可知不等式成立二、柯西不等式的简单应用柯西不等式是一个非常重要的不等式,学习柯西不等式可以提高学生的数学探究能力、创新能力等,能进一步开阔学生的数学视野,培养学生的创新能力,提高学生的数学素质。
柯西不等式的证明及相关应用一、柯西不等式的证明:(a1b1 + a2b2 + ... + anbn)^2 ≤ (a1^2 + a2^2 + ... + an^2) * (b1^2 + b2^2 + ... + bn^2)证明过程如下:1. 首先构造一个关于t的二次函数f(t) = (at - b)^2,其中a和b为任意实数。
2. 将函数f(t)进行完全平方,得到f(t) = a^2t^2 - 2abt + b^23.根据二次函数的性质,可以发现f(t)≥0,即二次函数的图像在t轴上方或与t轴相切。
4.根据二次函数的图像性质,我们可以得到二次函数在顶点处取到最小值。
5.通过求解f(t)对t的导数等于0,得到当t=b/a时,函数f(t)取到最小值。
6. 将f(t)中的a和b代换成数列a和b的对应元素,我们得到f(t) = (a1b1 + a2b2 + ... + anbn)^2 - 2(a1b1 + a2b2 + ... + anbn) + (b1^2 + b2^2 + ... + bn^2)。
7. 将t = b/a = (a1b1 + a2b2 + ... + anbn)/(a1^2 + a2^2 + ... + an^2)代入f(t),得到f(t) ≥ 0,即(a1b1 + a2b2 + ... + anbn)^2≤ (a1^2 + a2^2 + ... + an^2) * (b1^2 + b2^2 + ... + bn^2)。
8. 由于a1, a2, ..., an和b1, b2, ..., bn为任意实数,因此柯西不等式成立。
二、柯西不等式的应用:1.判定正交性:对于向量空间中的两个向量a和b,根据柯西不等式的等号情况可以判断a和b是否正交。
当且仅当(a·b)^2=,a,^2*,b,^2时,向量a和b正交。
2. 证明向量的长度:根据柯西不等式,可以推导出向量的长度公式。
设向量a = (a1, a2, ..., an),则有,a, = sqrt(a1^2 + a2^2 + ... + an^2)。
柯西不等式各种形式的证明及其应用柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。
但从历史的角度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz 不等式,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。
柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。
柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。
一、柯西不等式的各种形式及其证明 二维形式在一般形式中,12122,,,,n a a a b b c b d =====令,得二维形式()()()22222bd ac d c b a+≥++等号成立条件:()d c b a bc ad //== 扩展:()()()222222222123123112233nn n n a a a a b b b b a b a b a b a b +++⋅⋅⋅++++⋅⋅⋅+≥+++⋅⋅⋅+等号成立条件:1122000::::,1,2,3,,i i i i n n i i a b a b a b a b a b a b i n ==⎛⎫==⋅⋅⋅= ⎪=⋅⋅⋅⎝⎭当或时,和都等于,不考虑二维形式的证明:()()()()()()22222222222222222222222,,,220=ab c d a b c d R a c b d a d b c a c abcd b d a d abcd b c ac bd ad bc ac bd ad bc ad bc ++∈=+++=+++-+=++-≥+-=等号在且仅在即时成立三角形式ad bc=等号成立条件:三角形式的证明:222111nn n k k k k k k k a b a b ===⎛⎫≥ ⎪⎝⎭∑∑∑()()22222222222222222-2a b c d a b c d ac bd a ac c b bd d a c b d =++++≥+++++≥-+++=-+-≥注:表示绝对值向量形式()()()()123123=,,,,,,,,2=n n a a a a b b b b n N n R αβαβαββαλβλ≥⋅⋅⋅⋅=⋅⋅⋅∈≥∈,等号成立条件:为零向量,或向量形式的证明:()()123123112233222222312322222222112233123123=,,,,,,,,,cos ,cos ,cos ,1n n n n n n n n n nm a a a a n b b b b m n a b a b a b a b m n m na a ab b b b m nm n a b a b a b a b a a a a b b b b =⋅=++++==++++++++≤∴++++≤++++++++令一般形式211212⎪⎭⎫ ⎝⎛≥∑∑∑===n k k k nk k nk k b a b a 1122:::n n i i a b a b a b a b ==⋅⋅⋅=等号成立条件:,或 、均为零。
2 .2 2a b cd 2ac bd等号成立条件:ad bc a/b c/d扩展:a : a ;a fa 〔b i a ? b ? a s b sa nb n等号成立条件:ai : b| a 2 :b 2a n :b柯西不等式各种形式的证明及其应用柯西不等式是由大数学家柯西(Cauchy)在研究数学分n 22n析中的“流数”问题时得到的。
但从历史的角度讲,该不等 ak2S 2k 1 k 1k 1式应当称为Cauchy-Bu niakowsky-Schwarz 不等式,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地 步。
柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。
西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。
一、柯西不等式的各种形式及其证明 二维形式在一般形式中, 令n 2,a 1a, a 2b,D c,b 2d ,得二维形式当a 0或b 0时,a i 和b 都等于0,不考虑 a i : b,i 1,2,3, ,n二维形式的证明:2 2 2 2a b c d a,b,c,d R2 2a c .2.2b d2 . 2 . 2 2a db c2 2a c 2abcdb 2d 2a 2d 22abcd b 2c 222ac bdad bcac 2bd等号在且仅在ad bc 0 即ad 二be 时成立三角形式■- a2 b2. c2 d2 a c $ b d 等号成立条件:ad bc三角形式的证明:I I II ,等号成立条件:a 1,a 2,a 3 , a n为零向量,或bib® ,b nn N, n 2两边开根号,得a 2b 2, c 2 d 2向量形式2. 2akb kk 1 k 1证明:a * 2___ ________________ 2b 「c 2—d 2 a 2 b 2c 2d 2 2 \ a 2 b 2 . c 2 d 22a 2a.2 2b c2c 2ac 2c2d 2 ac b 2-2bd2d bdd 2 注:表示绝对值得证。
柯西不等式的证明及应用柯西(Cauchy )不等式()22211n n b a b a b a +++ ()()222221222221nnb b ba a a ++++++≤ ()n i Rb a ii 2,1,=∈等号当且仅当021====n a a a 或i i ka b =时成立(k 为常数,n i 2,1=)现将它的证明介绍如下:证明1:构造二次函数 ()()()2222211)(n n b x a b x a b x a x f ++++++==()()()22222121122122n nn n n n a a a x a b a b a b x b b b +++++++++++22120nn a a a +++≥()0f x ∴≥恒成立()()()2222211*********n n n n n n a b a b a b a a a b b b ∆=+++-++++++≤即()()()2222211221212nn n n nn a b a b a b a a a bb b +++≤++++++当且仅当()01,2i i a x b x i n +== 即1212n na a ab b b === 时等号成立 证明(2)数学归纳法(1)当1n =时 左式=()211a b 右式=()211a b 显然 左式=右式 当2n =时, 右式()()()()2222222222121211222112a a b b a b a b a b a b =++=+++()()()2221122121212222a b a b a a b b a b a b ≥++=+=右式仅当即 2112a b a b = 即1212a ab b =时等号成立 故1,2n =时 不等式成立(2)假设n k =(),2k k ∈N ≥时,不等式成立 即 ()()()2222211221212kk k k kk a b a b a b a a a bb b +++≤++++++当 i i ka b =,k 为常数,1,2i n = 或120k a a a ==== 时等号成立设22212ka a a A ==== 22212k b b b B ====1122k k C a b a b a b =+++则()()2222211111k k k k k a b ba b +++++A +B +=AB +A +()22221111112k k k k k k C Ca b a b C a b ++++++≥++=+ ()()22222222121121k k kka a a ab b b b ++∴++++++++()2112211k k k k a b a b a b a b ++≥++++当 i i ka b =,k 为常数,1,2i n = 或120k a a a ==== 时等号成立即 1n k =+时不等式成立 综合(1)(2)可知不等式成立柯西不等式是一个非常重要的不等式,灵活巧妙的应用运用它,可以使一些较为困难的问题迎刃而解,这个不等式结构和谐,应用灵活广泛,利用柯西不等式可处理以下问题: 1) 证明相关命题例1. 用柯西不等式推导点到直线的距离公式。
柯西不等式各种形式的证明及其应用柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。
但从历史的角度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz 不等式,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。
柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。
柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。
一、柯西不等式的各种形式及其证明 二维形式在一般形式中,12122,,,,n a a a b b c b d =====令,得二维形式()()()22222bd ac d c b a+≥++等号成立条件:()d c b a bc ad //== 扩展:()()()222222222123123112233nn n n a a a a b b b b a b a b a b a b +++⋅⋅⋅++++⋅⋅⋅+≥+++⋅⋅⋅+等号成立条件:1122000::::,1,2,3,,i i i i n n i i a b a b a b a b a b a b i n ==⎛⎫==⋅⋅⋅= ⎪=⋅⋅⋅⎝⎭当或时,和都等于,不考虑二维形式的证明:()()()()()()22222222222222222222222,,,220=ab c d a b c d R a c b d a d b c a c abcd b d a d abcd b c ac bd ad bc ac bd ad bc ad bc ++∈=+++=+++-+=++-≥+-=等号在且仅在即时成立三角形式ad bc=等号成立条件:三角形式的证明:222111nn n k k k k k k k a b a b ===⎛⎫≥ ⎪⎝⎭∑∑∑()()22222222222222222-2a b c d a b c d ac bd a ac c b bd d a c b d =++++≥+++++≥-+++=-+-≥注:表示绝对值向量形式()()()()123123=,,,,,,,,2=n n a a a a b b b b n N n R αβαβαββαλβλ≥⋅⋅⋅⋅=⋅⋅⋅∈≥∈,等号成立条件:为零向量,或向量形式的证明:()()123123112233222222312322222222112233123123=,,,,,,,,,cos ,cos ,cos ,1n n n n n n n n n nm a a a a n b b b b m n a b a b a b a b m n m na a ab b b b m nm n a b a b a b a b a a a a b b b b =⋅=++++==++++++++≤∴++++≤++++++++令一般形式211212⎪⎭⎫ ⎝⎛≥∑∑∑===n k k k nk k nk k b a b a 1122:::n n i i a b a b a b a b ==⋅⋅⋅=等号成立条件:,或 、均为零。
一般形式的证明:211212⎪⎭⎫⎝⎛≥∑∑∑===nk k k nk kn k k b a ba 证明:()()()()()222222=/2=/2i j j i i i j j j j i i a b a b n a b a b a b a b n +++⋅+⋅++≥不等式左边共项不等式右边共项用均值不等式容易证明,不等式左边不等式右边,得证。
推广形式(卡尔松不等式):卡尔松不等式表述为:在m*n 矩阵中,各行元素之和的几何平均数不小于各列元素 之积的几何平均之和。
)()()11111231111,mmmmmmmmi i i in i i i i x x x x m n N ====+⎛⎫⎛⎫⎛⎫⎛⎫≥++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∈∏∏∏∏其中,或者:111111,mmmnnmij ij j i j i ij x x m n N x R ====++⎡⎤⎛⎫⎛⎫≥⎢⎥ ⎪ ⎪⎝⎭⎢⎥⎝⎭⎣⎦∈∈∑∑∏∏其中,,或者()()()()()11221111n n nn n n x y x y x y x y x x y ++++++⎡⎤≥++⎢⎥⎣⎦∏∏∏注:表示,,,x 的乘积,其余同理推广形式的证明: 推广形式证法一:111222112112121212112112121212112,,+n n n n nn n n n n n nn n n n n nn A x y A x y A x y x x x x A A A x x x n A A A A A A y y y yA A A y y y n A A A A A A n x A A A =++=++=+++++⎛⎫⎛⎫≥= ⎪ ⎪ ⎪⎝⎭⎝⎭+++⎛⎫⎛⎫≥= ⎪ ⎪ ⎪⎝⎭⎝⎭⎛⎫≥ ⎪ ⎪⎝⎭∏∏∏记由平均不等式得同理可得上述个不等式叠加,得1()()()()()()()()()()1121111112112211+nn nn nn n nn n n nn n y A A Ax y A A A x y x y x y x y x y ⎛⎫ ⎪ ⎪⎝⎭≥++⎡⎤++⎢⎥⎣⎦++++++⎡⎤≥++⎢⎥⎣⎦∏∏∏∏∏∏∏即即,证毕或者推广形式证法二:事实上涉及平均值不等式都可以用均值不等式来证,这个不等式并不难,可以简单证明如下:1112111111111111111mjnjimjnjimjnnjjiimmnjknk jjiimjkjm njiijxmxjixmxjixmxxxxx============≤≤≤⎛⎫⎪⎪≤⎪⎪⎝⎭⎛⎛⎫⎪⎝⎭⎝∑∑∑∑∑∑∑∏∑∏∑∏以上各式相加得上式也即11111111,1mnkm mn n mjk jik ij jx xm=====⎫⎪⎪≤⎪⎪⎭⎛⎫⎡⎤⎛⎫≤⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦∑∑∑∏∏该式整理,得:得卡尔松不等式,证毕付:柯西(Cauchy)不等式相关证明方法:()22211nnbababa+++ ()()222221222221nnbbbaaa++++++≤()niRbaii2,1,=∈等号当且仅当021====naaa 或iikab=时成立(k为常数,ni2,1=)现将它的证明介绍如下:证明1:构造二次函数()()()2222211)(nnbxabxabxaxf++++++==()()() 22222121122122n nn n n na a a x ab a b a b x b b b+++++++++++2212nna a a+++≥()0f x ∴≥恒成立 ()()()2222211221212440nnn n n n a b a b a b a a a b b b ∆=+++-++++++≤即()()()2222211221212nnn n n n a b a b a b a a a b b b +++≤++++++当且仅当()01,2i i a x b x i n +== 即1212nna a ab b b ===时等号成立 证明(2)数学归纳法(1)当1n =时 左式=()211a b 右式=()211a b 显然 左式=右式 当2n =时, 右式 ()()()()2222222222121211222112a a b b a b a b a b a b =++=+++()()()2221122121212222a b a b a a b b a b a b ≥++=+=右式仅当即 2112a b a b = 即1212a ab b =时等号成立 故1,2n =时 不等式成立(2)假设n k =(),2k k ∈N ≥时,不等式成立 即 ()()()2222211221212kk k k k k a b a b a b a a a b b b +++≤++++++当 i i ka b =,k 为常数,1,2i n = 或120k a a a ====时等号成立设22212k a a a A ==== 22212k b b b B ====1122k k C a b a b a b =+++则()()2222211111k k k k k a b ba b +++++A +B +=AB +A +()22221111112k k k k k k C Ca b a b C a b ++++++≥++=+()()22222222121121k k k k a a a a b b b b ++∴++++++++()2112211k k k k a b a b a b a b ++≥++++当 i i ka b =,k 为常数,1,2i n = 或120k a a a ====时等号成立即 1n k =+时不等式成立综合(1)(2)可知不等式成立二、柯西不等式的应用 1、巧拆常数证不等式例1:设a 、b 、c 为正数且互不相等。
求证:2222a b b c a c a b c++++++.a b c 、、均为正数()()()()()111292=a b c a b b c a c a b c a b b c a c ∴⎛⎫++++⎪+++⎝⎭+++++++为证结论正确,只需证:而为证结论正确,只需证:又29(111)=++∴只需证:()()()()()211121111119a b c a b b c a c a b b c a c a b b c a c ⎛⎫++++=⎪+++⎝⎭⎛⎫+++++++⎡⎤ ⎪⎣⎦+++⎝⎭≥++=又a b c、、互不相等,所以不能取等∴原不等式成立,证毕。
2、求某些特殊函数最值例2:y =求函数函数的定义域为[5,9],0y5*2106.44y x =≤===函数仅在时取到3、用柯西不等式推导点到直线的距离公式。
已知点()00,x y P 及直线:l 0x y C A +B += ()220A +B ≠ 设点p 是直线l 上的任意一点, 则0x x C A +B +=(1)12p p =(2)点12p p 两点间的距离12pp 就是点p 到直线l 的距离,求(2)式有最小值,有()()0101x x y y ≥A -+B -()0011x y C x y C A +B +-A +B +由(1)(2)得:1200p p x y C ≥A +B + 即12p p ≥(3)当且仅当 ()()0101:y y x x B--=A12p p l ⊥ (3)式取等号 即点到直线的距离公式即12p p =4、 证明不等式例 3已知正数,,a b c 满足1a b c ++= 证明 2223333a b c a b c ++++≥证明:利用柯西不等式()23131312222222222ab ca ab bc c ⎛⎫++=++ ⎪⎝⎭[]222333222a b c a b c ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥≤++++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ ()()2333a b c a b c =++++()1a b c ++=又因为 222a b c ab bc ca ++≥++ 在此不等式两边同乘以2,再加上222a b c ++得:()()2223a b c a b c ++≤++()()()22223332223a b c a b c a b c ++≤++•++故2223333a b c a b c ++++≥5、 解三角形的相关问题例 4设p 是ABC 内的一点,,,x y z 是p 到三边,,a b c 的距离,R 是ABC 外接圆的≤证明:由柯西不等式得,=111a b c≤++记S为ABC的面积,则2242abc abcax by czSR R++===≤=≤故不等式成立。