2022年中考数学一轮复习学案-第18课时 三角形基础知识
- 格式:doc
- 大小:484.00 KB
- 文档页数:5
备考中考数学一轮专题复习学案18三角形1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形,叫做三角形.2.三角形中的主要线段:(1)三角形的中线:连接三角形的一个顶点和它对边中点所得到的线段,叫做三角形这边上的中线.(2)三角形的高:从三角形的一个顶点向它的对边作垂线,连接这个顶点和垂足的线段,叫做三角形这边上的高线(简称三角形的高).(3)三角形的角平分线:连接三角形的一个顶点和这个角的平分线与对边交点的线段,叫做三角形的角平分线.(4)三角形中的中位线:连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半.3.三角形的边之间关系:(1)三角形三边关系定理:三角形的两边之和大于第三边.推论:三角形的两边之差小于第三边.(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围.③证明线段不等关系.【温馨提示】三角形的三边关系是判断三条线段能否构成三角形的依据,并且还可以利用三边关系列出不等式求某些量的取值范围. 4.三角形的角之间关系:(1)三角形的内角和定理:三角形三个内角和等于180°.推论:①直角三角形的两个锐角互余.②三角形的一个外角等于和它不相邻的来两个内角的和.③三角形的一个外角大于任何一个和它不相邻的内角.(2)三角形的外角和等于360°;5.三角形的边与角之间的关系:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角.6.三角形的分类:按边分:⎧⎪⎧⎨⎨⎪⎩⎩三边都不相等的三角形底边和腰不相等的三角形等腰三角形等边三角形三角形按角分:⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形锐角三角形斜三角形钝角三角形【例1】(2019·石家庄新华区质量检测)将一幅三角尺按图示的方式摆放(两条直角边在同一条直线上,且两锐角顶点重合),连接另外两条锐角顶点,并测得∠1=47°,则∠2的度数为( )A. 60°B. 58°C. 45°D. 43°【答案】B .【解答】如下图,∵∠3=180°-60°-45°=75°,∴∠2=180°-∠1-∠3=58°. 故选B .典型例题【例2】(2019·扬州)已知n 是正整数,若一个三角形的3边长分别是n +2、n +8、3n ,则满足条件的n 的值有( )A. 4个B. 5个C. 6个D. 7个【答案】D .【解答】由三角形两边之和大于第三边可得:⎩⎪⎨⎪⎧(n +2)+(n +8)>3n (n +2)+3n >n +8(n +8)+3n >n +2,解得2<n <10,∵n 是正整数,∴n =3,4,5,6,7,8,9,故选D.【例3】(2019·青岛)如图,BD 是△ABC 的角平分线,AE ⊥BD ,垂足为F .若∠ABC =35°,∠C =50°,则∠CDE 的度数为( )A. 35°B. 40°C. 45°D. 50°【答案】C .【解答】如下图,∵BD 平分∠ABC ,∠ABC =35°,∴∠1=∠2=17.5°.∵AE ⊥BD ,∴BF 为AE 边上的中线,∴AD =DE ,∠5=90°-∠1=72.5°.∴∠3=∠4.∴∠CDE =2∠3.∵∠C =50°,∴∠BAC =95°.∴∠3=∠BAC -∠5=22.5°.∴∠CDE =2∠3=45°.故选C .知识点2:全等三角形知识点梳理1.全等三角形:能够完全重合的两个三角形叫全等三角形.2.三角形全等的判定:三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”).直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,除了有一般三角形全等的判定方法,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)3.全等三角形的性质:全等三角形的对应边相等,对应角相等.典型例题【例4】(2019·衡水故城县期末)如图,△ABC ≌△DEC ,点E 在线段AB 上,若∠AED +∠BCE =52°,则∠ACD 的度数为( )A. 25°B. 26°C. 27°D. 28°【答案】B .【解答】∵△ABC ≌△DEC ,∴∠ABC =∠DEC ,∠ACB =∠DCE ,∴∠ACD =∠BCE .∵∠AED +∠DEC +∠CEB =180°,∠CEB +∠ABC +∠BCE =180°,∴∠AED =∠BCE .∵∠AED +∠BCE =52°,∴∠AED =∠BCE =12×52°=26°.∴∠ACD =∠BCE =26°. 1.等腰三角形的性质:(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角) 推论1:等腰三角形顶角平分线平分底边并且垂直于底边.即等腰三角形的顶角平分线、底边上的中线、底边上的高重合.21教育名师原创作品推论2:等边三角形的各个角都相等,并且每个角都等于60°.知识点梳理知识点3: 等腰三角形(2)等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45°②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).③等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b <a④等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A =180°—2∠B ,∠B =∠C =2180A ∠-︒ 2.等腰三角形的判定:等腰三角形的判定定理及推论:定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边).这个判定定理常用于证明同一个三角形中的边相等.推论1:三个角都相等的三角形是等边三角形推论2:有一个角是60°的等腰三角形是等边三角形.推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.3.等边三角形:(1)定义:三条边都相等的三角形是等边三角形.(2)性质:等边三角形的各角都相等,并且每一个角都等于60°.(3)判定:三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形.【例5】(2019·内江)一个等腰三角形的底边长是6,腰长是一元二次方程x2-8x+15=0的一根,则此三角形的周长是()A. 16B. 12C. 14D. 12或16【答案】A.【解析】方程x2-8x+15=0的两个根为3,5.但长度为3,3,6的三条线段不能构成三角形,故该三角形的三边为5,5,6,即周长为16.故答案为A.1.直角三角形定义:有一个角是直角的三角形叫作直角三角形2. 直角三角形的性质:(1)直角三角形两锐角互余.(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;(3)在直角三角形中,斜边上的中线等于斜边的一半.3. 直角三角形的判定:(1)两个内角互余的三角形是直角三角形.(2)三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形.4.勾股定理及逆定理:(1)勾股定理:直角三角形的两条直角边a、b的平方和等于斜边c 的平方,即:a2+b2=c2;(2)勾股定理的逆定理:如果三角形的三条边a、b、c有关系:a2+b2=c2,那么这个三角形是直角三角形.【例6】(2019·重庆市12/26)如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC沿BD翻折,得到△BDC',DC′与AB 交于点E,连结AC',若AD=AC′=2,BD=3,则点D到BC′的距离为()A33B3217D13【答案】B.【分析】连接CC',交BD于点M,过点D作DH⊥BC'于点H,由翻折知,△BDC≌△BDC',BD垂直平分CC',证△ADC'为等边三角形,利用解直角三角形求出DM=1,C'M=3DM3,BM=2,在Rt△BMC'中,利用勾股定理求出BC'的长,在△BDC'中利用面积法求出DH的长.【解答】解:如图,连接CC',交BD于点M,过点D作DH⊥BC'典型例题于点H,∵AD=AC′=2,D是AC边上的中点,∴DC=AD=2,由翻折知,△BDC≌△BDC',BD垂直平分CC',∴DC=DC'=2,BC=BC',CM=C'M,∴AD=AC′=DC'=2,∴△ADC'为等边三角形,∴∠ADC'=∠AC'D=∠C'AC=60°,∵DC=DC',∴∠DCC'=∠DC'C=12×60°=30°,在Rt△C'DM中,∠DC'C=30°,DC'=2,∴DM=1,C'M∴BM=BD﹣DM=3﹣1=2,在Rt△BMC'中,BC',∵S△BDC'=12BC'•DH=12BD•CM,DH=3,∴DH故选:B.1.(2019·荆门)将一副直角三角板按如图所示的位置摆放,使得它们的直角边互相垂直,则∠1的度数是( )A. 95°B. 100°C. 105°D. 110°2.(2019·石家庄藁城区模拟)李老师布置了一道作图作业:“将一条12cm的线段分成三段,然后用这三条线段为边作一个三角形.”下面是四个同学分线段的结果:小李:5cm,5cm,2cm;小王:3cm,4cm,5cm;小赵:3cm,3cm,6cm;小张:4cm,4cm,4cm.其中,分法不正确的是( )A.小李B.小王C.小赵D.小张3. (2019·杭州)在△ABC中,若一个内角等于另两个内角的差,则( )A. 必有一个内角等于30°B. 必有一个内角等于45°C. 必有一个内角等于60°D. 必有一个内角等于90°4. (2019·眉山)如图,在△ABC中,AD平分∠BAC交BC于点D,∠巩固训练B=30°,∠ADC=70°,则∠C的度数是( )A. 50°B. 60°C. 70°D. 80°5. (2019·张家界)如图,在△ABC中,∠C=90°,AC=8,DC=13 AD,BD平分∠ABC,则点D到AB的距离等于( )A. 4B. 3C. 2D. 16. (2018·邯郸二模)三个全等三角形按如图所示的形式摆放,则∠1+∠2+∠3的度数是( )A. 90°B. 120°C. 135°D. 180°7. (2019·河北中考说明)如图,在△ABC中,已知∠C=90°,AC =60 cm,AB=100cm,a,b,c,…,是在△ABC内部的矩形,它们的一个顶点在AB上,一组对边分别在AC上或与AC平行,另一组对边分别在BC上或与BC平行.若各矩形在AC上的边长相等,矩形a的一边长是72 cm,则这样的矩形a,b,c,…的个数是()A. 6B. 7C. 8D. 98. (2018·包头)如图,在△ABC中,AB=AC,△ADE的顶点D,E 分别在BC,AC上,且∠DAE=90°,AD=AE.若∠C+∠BAC=145°,则∠EDC的度数为()A.17.5°B.12.5°C.12°D.10°9. (2018·陕西)如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC的平分线交AD于点E,则AE的长为( )A. 423B. 2 2C.823D.3 210.(2019·呼和浩特)下面三个命题①底边和顶角对应相等的两个等腰三角形全等;②两边及其中一边上的中线对应相等的两个三角形全等;③斜边和斜边上的中线对应相等的两个直角三角形全等,其中正确的命题序号为________.11. (2019·怀化)若等腰三角形的一个底角为72°,则这个等腰三角形的顶角为________.12. (2019·株洲)如图所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E、F分别为MB、BC的中点,若EF=1,则AB =________.13. (2019·成都)如图,在△ABC中,AB=AC,点D,E都在边BC上,∠BAD=∠CAE,若BD=9,则CE的长为________.14. (2019·甘肃)定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=________.15. (2019·盐城)如图,在△ABC中,BC=6+2,∠C=45°,AB=2AC,则AC的长为________.16.(2019·通辽15/26)腰长为5,高为4的等腰三角形的底边长为.17.(2019·北京市12/28)如图所示的网格是正方形网格,则∠PAB+∠PBA=°(点A,B,P是网格线交点).18.(2019·杭州)如图,在△ABC中,AC<AB<BC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B;(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC=3∠B,求∠B的度数.19.(2019·兰州)如图,AB=DE,BF=EC,∠B=∠E.求证:AC∥DF.20.(2019·无锡)如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点O,求证:(1)△DBC≌△ECB;(2)OB=OC.21. (2019·温州)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF;(2)当AD⊥BC,AE=1,CF=2时,求AC的长.22.(2019·石家庄十八县联考二)如图,直线a∥b,点M,N分别为直线a和直线b上的点,连接M,N,∠1=70°,点P是线段MN 上一动点,直线DE始终经过点P,且与直线a,b分别交于点D,E,设∠NPE=α.(1)证明:△MPD∽△NPE;(2)当△MPD与△NPE全等时,直接写出点P的位置;(3)当△NPE是等腰三角形时,求α的值.1.【答案】C.【解析】如下图,可得∠3=∠2=45°,∠4=60°,∴∠1=45°+60°=105°.2.【答案】C.【解析】∵3+3=6,不满足三角形两边之和大于第三边∴长为3 cm,巩固训练参考答案3 cm ,6 cm 的三条线段不能作一个三角形,故选C.3.【答案】D.【解析】设这三个内角分别为∠A ,∠B ,∠C ,则∠A =∠B -∠C ,移项得∠A +∠C =∠B ,∵∠A +∠B +∠C =180°,∴2∠B =180°,即∠B =90°.4.【答案】C.【解析】∵∠B =30°,∠ADC =70°,∴∠BAD =∠ADC -∠B =70°-30°=40°.∵AD 平分∠BAC ,∴∠DAC =∠BAD =40°.∴∠C =180°-∠ADC -∠DAC =180°-70°-40°=70°.5.【答案】C.【解析】如下图,过点D 作DE ⊥AB 于点E .∵DC =13AD ,∴DC =14AC .∵AC =8,∴DC =14×8=2.∵∠C =90°,∴BC ⊥CD .又∵BD 平分∠ABC ,∴DE =DC =2,故选C .6.【答案】D.【解析】如下图,由图形可得∠1+∠4+∠5+∠8+∠6+∠2+∠3+∠9+∠7=540°,∵三个三角形全等,∴∠4+∠6+∠9=180°.又∵∠5+∠7+∠8=180°,∴∠1+∠2+∠3=540°-180°-180°=180°.7.【答案】D.【解析】如下图.易证△BDE≌△EFG≌△GKH≌△HL M,可得BD=EF =GK=HL=BC-DC=1002-602-72=8 cm,根据此规律,共有80÷8-1=9个这样的矩形.8.【答案】D.【解析】∵AB=AC,∴∠B=∠C.∵∠C+∠BAC=145°,∴∠B=180°-(∠C+∠BAC)=180°-145°=35°.∴∠C=35°.∵∠DAE=90°,∴∠ADC=55°.∵AD=AE,∴∠ADE=45°.∴∠EDC=∠ADC-∠ADE=55°-45°=10°.9.【答案】C.【解析】∵AD⊥BC,∴∠ADB=∠ADC=90°.在Rt△ACD中,∵∠C=45°,AC=8,∴AD=AC·sin45°=8×22=4 2.∵∠ABC=60°,∴∠BAD=90°-60°=30°.∵BE平分∠ABD,∴∠ABE=∠DBE=30°.∴∠BAD=∠ABE,∴AE=BE,在Rt△BDE中,∵∠DBE=30°.∴DE=1 2 BE=12AE .∵AE +DE =AD ,∴AE +12AE =4 2.∴AE =823.10.【答案】①②. 【解析】命题①顶角相等的等腰三角形则三角都相等,若有底边相等则两三角形全等;命题②如解图所示,若AB =EF ,BC =FG ,AH 、EI 分别为BC 、FG 边上的中线,则有△ABH ≌△EFI ,即有∠B =∠F ,即有△ABC ≌△EFG ;命题③错误.11.【答案】36°.【解析】这个等腰三角形的顶角为180°-2×72°=36°.12.【答案】4.【解析】在Rt △ABC 中,∵∠ACB =90°,CM 是斜边AB 上的中线,∴AB =2MC ,∵E 、F 分别为MB 、BC 的中点,∴EF 是△CM B 的中位线.又∵EF =1,∴MC =2EF =2.∴AB =2MC =4.13.【答案】9.【解析】∵在△ABC 中,AB =AC ,∴∠B =∠C .∵∠BAD =∠CAE ,∴△BAD ≌△CAE .∴CE =BD =9.14.【答案】85或14. 【解析】当∠A 为顶角时,则底角∠B =∠C =12(180°-∠A )=50°,此时的特征值k =80°50°=85;当∠A 为底角时,则顶角(∠B 或∠C )=180°-2∠A =20°,此时的特征值k =20°80°=14.故答案为85或14. 15.【答案】2.【解析】如下图,过点A 作AD ⊥BC 于点D ,设AD =x ,∵∠C =45°,∴CD =AD =x ,AC =2x .∴AB =2AC =2x .在Rt △ABD 中,BD =AB 2-AD 2=(2x )2-x 2=3x ,∴BC =BD +CD =3x +x =(3+1)x =6+2=2(3+1),解得x =2,∴AC =2.16.【答案】6或25或45.【解析】解:①如图1:当AB =AC =5,AD =4,则BD =CD =3,∴底边长为6;②如图2:当AB=AC=5,CD=4时,则AD=3,∴BD=2,∴BC=22+=25,24∴此时底边长为25;③如图3:当AB=AC=5,CD=4时,则AD22-3,AC CD∴BD=8,∴BC=45∴此时底边长为45故答案为:6或5517.【答案】45.【解析】解:延长AP交格点于D,连接BD,则PD2=BD2=1+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,∴∠DPB =∠PAB +∠PBA =45°,故答案为:45.18.【解答】(1)证明:∵点P 在AB 的垂直平分线上,∴PA =PB .∴∠PAB =∠B .∴∠APC =∠PAB +∠B =2∠B ;(2)解:根据题意得BQ =BA ,∴∠BAQ =∠BQA ,设∠B =x ,∴∠AQC =∠B +∠BAQ =3x ,∴∠BAQ =∠BQA =2x ,在△ABQ 中,x +2x +2x =180°,解得x =36°,即∠B =36°.19.【解答】证明:∵BF =EC ,∴BF +FC =EC +CF ,即BC =EF .在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AB =DE ∠B =∠E ,BC =EF∴△ABC ≌△DEF (SAS).∴∠ACB =∠DFE .∴AC ∥DF .20.【解答】 (1)证明:∵AB =AC ,∴∠DBC =∠ECB .∵BD =CE ,BC =BC ,∴△DBC ≌△ECB (SAS);(2)解:∵△DBC ≌△ECB ,∴∠EBC =∠DCB .∴OB =OC .21.【解答】(1)证明:∵CF ∥AB ,∴∠B =∠FCD ,∠BED =∠F .∵AD 是BC 边上的中线,∴BD =CD .在△BDE 与△CDF 中,⎩⎪⎨⎪⎧∠EBD =∠FCD ∠BED =∠CFD ,BD =CD∴△BDE ≌△CDF (AAS );(2)解:∵△BDE ≌△CDF ,∴BE =CF =2.∴AB =AE +BE =1+2=3.∵AD ⊥BC ,BD =CD ,∴△ABC 为等腰三角形.∴AC =AB =3.22.【解答】(1)证明:∵a ∥b ,∴∠1=∠PNE .又∵∠MPD =∠NPE =α,∴△MPD ∽△NPE ;(2)解:当△MPD 与△NPE 全等时,点P 是MN 的中点;(3)解:①当PN =PE 时,∠PNE =∠PEN =70°.∴α=180°-∠PNE -∠PEN =180°-70°-70°=40°. ∴α=40°;②当EP =EN 时,α=∠PNE =∠1=70°;③当NP =NE 时,α=∠PEN =180°-∠PNE 2=180-∠12=180°-70°2=55°. 综上所述:α的值为40°或70°或55°.。
中考数学一轮复习第18讲《等腰三角形》【考点解析】知识点一、等腰三角形的性质【例1(·贵州安顺·3分)已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A.20或16B.20C.16D.以上答案均不对【分析】根据非负数的意义列出关于x、y的方程并求出x、y的值,再根据x是腰长和底边长两种情况讨论求解.【解答】解:根据题意得,解得,(1)若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为4+8+8=20.故选B.【点评】本题考查了等腰三角形的性质、非负数的性质及三角形三边关系;解题主要利用了非负数的性质,分情况讨论求解时要注意利用三角形的三边关系对三边能否组成三角形做出判断.根据题意列出方程是正确解答本题的关键.【变式】(·黑龙江哈尔滨·3分)在等腰直角三角形ABC中,∠ACB=90°,AC=3,点P为边BC的三等分点,连接AP,则AP的长为或.【考点】等腰直角三角形.【分析】①如图1根据已知条件得到PB=BC=1,根据勾股定理即可得到结论;②如图2,根据已知条件得到PC=BC=1,根据勾股定理即可得到结论.【解答】解:①如图1,∵∠ACB=90°,AC=BC=3,∵PB=BC=1,∴CP=2,∴AP==,②如图2,∵∠ACB=90°,AC=BC=3,∵PC=BC=1,∴AP==,综上所述:AP的长为或,故答案为:或.知识点二、等腰三角形的内角的计算【例2】(新疆乌鲁木齐)等腰三角形的一个外角是60°,则它的顶角的度数是.【答案】120°.【分析】本题主要考虑与这个外角相邻的内角是顶角或是底角,利用内角和定理即可得解. 【解析】等腰三角形一个外角为60°,那相邻的内角为120°,三角形内角和为180°,如果这个内角为底角,内角和将超过180°,所以120°只可能是顶角.故答案为:120°.【点评】此题主要考查学生对等腰三角形的性质和三角形内角和定理的理解和应用,此题的关键是熟练掌握三角形内角和定理.【变式】如图,在等腰三角形纸片ABC中,AB=AC,∠A=50°,折叠该纸片,使点A落在点B处,折痕为DE,则∠CBE= °.【答案】15.【解析】∵AB=AC,∠A=50°,∴∠ACB=∠ABC=12(180°﹣50°)=65°.∵将△ABC折叠,使点A落在点B处,折痕为DE,∠A=50°,∴∠ABE=∠A=50°.∴∠CBE=∠ABC﹣∠ABE=65°﹣50°=15°.知识点三、等腰三角形的多解问题【例3】(·湖北武汉)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5 B.6 C.7 D.8【考点】等腰三角形的判定;坐标与图形性质【答案】A【解析】构造等腰三角形,①分别以A,B为圆心,以AB的长为半径作圆;②作AB的中垂线.如图,一共有5个C点,注意,与B重合及与AB共线的点要排除。
2023年中考数学一轮复习备考第18讲等腰三角形与直角三角形考点清单考点1 等腰三角形的性质与判定性质(1)两底角相等,即∠B=∠C(等边对等角);(2)两腰相等,即AB=AC;(3)是轴对称图形,有一条对称轴,即AD所在的直线;(4)“三线合一”(即顶角的①、底边上的中线和底边上的高互相重合)判定(1)两边相等的三角形是等腰三角形;(2)②相等的三角形是等腰三角形(等角对等边)周长、面积周长:C=a+2b;面积:S=③(其中a是底边长,b是腰长,h是底边上的高)【易错警示】等腰三角形中的分类讨论:(1)当顶角和底角不确定时,需要分类讨论,且需要用三角形内角和定理检验;(2)当腰长和底边长不确定时,需要分类讨论,且需要用三角形三边关系检验.考点2 等边三角形的性质与判定性质(1)等边三角形的三条边相等,即AB=BC=AC;(2)等边三角形的三个内角相等且每一个角都等于④,即∠B=∠C=∠BAC=60°;(3)等边三角形是轴对称图形,有⑤条对称轴;(4)等边三角形“三线合一”;(5)等边三角形的内心、外心重合判定(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是⑥的等腰三角形是等边三角形周长、面积周长:C=3a;面积:S=12ah=34a2(h=32a)(其中a是边长,h是任一边上的高)考点3 直角三角形的性质与判定性质(1)两锐角之和等于90°,即∠A+∠B=90°;(2)斜边上的中线等于斜边的⑦;(3)30°角所对的直角边等于斜边的⑧;(4)勾股定理:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么⑨;【拓展】在直角三角形中,如果一条直角边长等于斜边长的一半,那么这条直角边所对的锐角等于⑩;外接圆半径R=c2,内切圆半径r=12(a+b-c)判定(1)有一个角为⑪的三角形是直角三角形;(2)有两个角互余的三角形是直角三角形;(3)勾股定理的逆定理:如果三角形的三边长a,b,c满足⑫,那么这个三角形是直角三角形;【拓展】一条边上的中线等于这条边的一半的三角形是直角三角形周长、面积周长:C=a+b+c;面积:S△ABC=12ab=12ch(其中a,b分别为两个直角边长,c为斜边长,h为斜边上的高)考点4 等腰直角三角形的性质与判定性质(1)两直角边相等,即AC=BC;(2)两锐角相等且都等于45°;(3)是轴对称图形,有一条对称轴,即CD所在的直线;(4)“三线合一”判定(1)顶角为⑬的等腰三角形是等腰直角三角形;(2)有两个角为⑭的三角形是等腰直角三角形;(3)有一个角为⑮的直角三角形是等腰直角三角形;(4)两直角边相等的直角三角形是等腰直角三角形周长、面积 周长:C =2a +c ;面积:S =12a 2=12ch =22ah (其中a 为直角边长,c 为斜边长,h 为斜边上的高)强 化 演 练基础练1.如图,在Rt △ABC 中,∠ACB =90°,AC =BC ,过点C 作 CD ⊥AB ,垂足为D ,E 为BC 的中点,AE 与CD 交于点F .若DF 的长为23,则AE 的长为( )A .2B .2C .5D .2 52.已知a ,b 是等腰三角形的两边长,且a ,b 满足2a -3b +5+(2a +3b -13)2=0,则此等腰三角形的周长为( )A .8B .6或8C .7D .7或83.如图,在等腰三角形ABC 中,AB =AC =5,BC =8,AD ⊥AC 交BC 于点D ,则AD 的值为( )A .125B .154C .5D .2034.如图,AD 是等边三角形ABC 的中线,AE =AD ,则∠EDC 的度数为( )A .30°B .20°C .25°D .15°5.如图是“人字形”钢架,其中斜梁AB =AC ,顶角∠BAC =120°,跨度BC =10 m ,AD 为支柱(即底边BC 上的中线),两根支撑架DE ⊥AB ,DF ⊥AC ,则DE +DF 等于( )A .10 mB .5 mC .2.5 mD .9.5 m6.如图,在△ABC 中,AB =BC ,由图中的尺规作图痕迹得到的射线BD 与AC 交于点E ,点F 为BC 的中点,连接EF .若BE =AC =2,则△CEF 的周长为( )A .3+1B .5+3C .5+1D .47.如图,在4×4的正方形网格中有两个格点A ,B ,连接AB ,在网格中再找一个格点C , 使得△ABC 是等腰直角三角形,满足条件的格点C 的个数是( )A .2B .3C .4D .58.如图,在△ABC 中AC =BC ,点D 和E 分别在AB 和AC 上,且AD =AE .连接DE ,过点A 作AH ⊥BC 于点H ,交DE 于点F .若∠C =40°,则∠AFE 的度数为( )A .60°B .65°C .75°D .80°9.如图,在△ABC 中,点O 是角平分线AD ,BE 的交点.若AB =AC =10,BC =12,则tan ∠OBD 的值是( )A .12B .2C .63D .6410.如图,在Rt △ABC 中,CD 为斜边AB 上的中线.若CD =2,则AB = .11.如图,在△ABC 中,AB =AC =2,P 是BC 上任意一点,PE ⊥AB 于点E ,PF ⊥AC 于点F .若S △ABC =1,则PE +PF = .12.如图,在Rt△ABC中,∠C=90°,AF=EF.若∠CFE=72°,则∠B=.13.如图,EA=EB=EC,∠AEB=70°,则∠ACB=°.14.如图,在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于点D,E为垂足,连接CD.若BD=1,则AC的长是 .15.如图,在△ABC中,∠ABC的平分线BD交AC边于点D,AE⊥BC于点E.已知∠ABC=60°,∠C =45°.(1)求证:AB=BD;(2)若AE=3,求△ABC的面积.16.如图,在△ABC中,AD⊥BC,垂足为D,BD=CD,延长BC至点E,使得CE=CA,连接AE.(1)求证:∠B=∠ACB;(2)若AB=5,AD=4,求△ABE的周长和面积.强化练17.如图,在等边三角形ABC中,AB=10,E为AC的中点,点F,G为AB边上的动点,且FG=5,则EF+CG的最小值是()A.57 B.5 6 C.53+5 D.1518.如图,在△ABC中,AD和BE是高,∠ABE=45°,F是AB的中点,AD与FE,BE分别交于点G,H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC·AD=2AE2;④S△ABC=4S△ADF.其中正确的有()A.1个B.2个C.3个D.4个提升练19.七巧板是大家熟悉的一种益智类玩具,用七巧板能拼出许多有趣的图案.小聪同学将一个直角边长为20 cm的等腰直角三角形纸板,切割七块,正好制成一副七巧板,则图中阴影部分的面积为cm2.20.如图,在△ABC中,AB=AC=6,∠BAC=120°,P是BC上的动点,Q是AC上的动点(Q不与A,C重合).(1)线段P A的最小值为;(2)当△ABP 为直角三角形,△PCQ 也为直角三角形时,CQ 的长度为 .参 考 答 案考点清单①两角 ②两角 ③12ah ④60° ⑤三 ⑥60° ⑦一半 ⑧一半 ⑨a 2+b 2=c 2 ⑩30° ⑪90° ⑫a 2+b 2=c 2 ⑬90° ⑭45° ⑮45°强化演练1. C2. D3. B4. D5. B6. C7. B8. C9. A 10. 4 11. 1 12. 54° 13. 35 14. 2 3 15. (1)证明:∵BD 平分∠ABC ,∠ABC =60°,∴∠DBC =12∠ABC =30°. ∵∠C =45°,∴∠ADB =∠DBC +∠C =75°,∠BAC =180°-∠ABC -∠C =75°,∴∠BAC =∠ADB ,∴AB =BD .(2)解:在Rt △ABE 中,∵∠ABC =60°,AE =3,∴BE =AE tan ∠ABC = 3. 在Rt △AEC 中,∵∠C =45°,AE =3,∴EC =AE tan C =3,∴BC =3+3,∴S △ABC =12BC ·AE =9+332.16. (1)证明:在△ADB 和△ADC 中,⎩⎪⎨⎪⎧AD =AD ,∠ADB =∠ADC ,BD =CD ,∴△ADB ≌△ADC (SAS),∴∠B =∠ACB .(2)解:在Rt △ADB 中,∵AB =5,AD =4,∴BD =AB 2-AD 2=52-42=3,∴BD =CD =3,AC =AB =CE =5,∴BE =2BD +CE =2×3+5=11,DE =CD +CE =8. 在Rt △ADE 中,由勾股定理,得AE =AD 2+DE 2=42+82=45,∴C △ABE =AB +BE +AE =5+11+45=16+45,S △ABE =12BE ·AD =12×11×4=22.17. A 18. D 19.25420. (1)3 (2)4.5或4或3。
第18课时 三角形基础知识
学习目标
掌握三角形中边、角及相关线段的概念,正确运用相关性质和判定解决问题. 一.小题唤醒
1.如图,过△ABC 的顶点B ,作AC 边上的高,以下作法正确的是( ).
2. 已知三角形其中两边长为4=a ,7=b ,则第三边c 的长度可以是 .
3. 如图,方格中的点A 、B 、C 、D 、E 称为“格点”,以这5个格点中的任意3点为顶点,一共可以画 个三角形,其中 是直角三角形, 钝角三角形, 锐角三角形, 是等腰三角形.
4.等腰三角形的一边长为3㎝,另一边长是5㎝,则它的第三边长为 . 5.在△ABC 中,∠A =70°,∠B =60°,点D 在BC 的延长线上,则∠ACD = 度.
6 . 如图在△ABC 中AD 是角平分线BE 是中线,∠BAD =400则∠CAD = 若AC =6cm 则AE = . 一个多边形的每一个外角都是72°,那么这个多边形的内角和为 ,一个多边形的每一个内角是144
,则它是 边形. 二.体系建构
E
D
C
B
三.典型例题
例1.如图,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC =63°.求∠DAC 的度数.
例2.如图,P 是等边三角形ABC 内的一点,连结P A 、PB 、PC ,•以BP 为边作∠PBQ =60°,且BQ =BP ,连结CQ .
(1)观察并猜想AP 与CQ 之间的大小关系,并证明你的结论.
(2)若P A :PB :PC =3:4:5,连结PQ ,试判断△PQC 的形状,并说明理由.
例3.如图,∠ABC =90°,D 、E 分别在BC 、AC 上,AD ⊥DE ,且AD =D E ,点F 是AE 的中点,FD 与AB 相交于点M .
(1)求证:∠FMC =∠FCM ;
(2)AD 与MC 垂直吗?并说明理由.
4
3
2
1
D C
B A
四.当堂训练
*1. 已知一个三角形三个内角度数的比是1:5:6,则其最大内角度数为 .
*2.如图,在△ABC 中,BD 平分∠ABC ,BC 的中垂线交BC 于点E ,交BD 于点F ,连接CF .若∠A =60°,∠ABD =24°,则∠ACF 的度数为 .
*3.在△ABC 中,∠B ,∠C 的平分线BE ,CD 相交于点F ,∠ABC =42°, ∠A =60°,则∠BFC = .
*4.已知三角形的两边长分别为3、4,则第三边x 的取值范围是 ;当x = 时,该三角形是直角三角形.
*5.等腰△ABC 的周长为21,底边BC = 5,AB 的垂直平分线DE 交AB 于点D ,交AC 于点E ,则△BEC 的周长为( )
A .13
B .14
C .15
D .1 **6.如图,在△ABC 中,∠B =63°,∠C =51°,AD 是BC 边上的高,A
E 是∠BAC 的平分线,求∠DAE 的度数.
五.课后巩固
*1.已知△ABC 中,∠B 是∠A 的2倍,∠C 比∠A 大20°,则∠A 的度数是 .
*2.如图,点D 在△ABC 边BC 的延长线上,CE 平分∠ACD ,∠A =80°, ∠B =40°,则∠ACE 的大小
是 度.
*3.如图,在△ABC 中,∠B =46°,∠C =54°,AD 平分∠BAC ,交BC 于点D ,DE ∥AB ,交AC 于点E ,
则∠ADE 的大小是 .
第2题 第3题
**4.如图,AD
为△ABC 的中线,BE 为三角形ABD 中线,
⑴∠ABE =15°,∠BAD =35°,求∠BED 的度数;
E
D A
B
C
第5题
⑵在△BED 中作BD 边上的高;
⑶若△ABC 的面积为60,BD =5,则点E 到BC 边的距离为多少?
**5. 如图,△ABC 中,∠ACB =90°,AC =BC ,AE 是BC 边上的中线,过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于D .
(1)求证:AE =CD :(2)若AC =12cm ,求BD 的长.
E
D C
B
A。