∑Y = 0
∑mO ( Fi ) = 0
①一矩式
∑ mB ( Fi ) = 0
②二矩式 条件: 条件:x 轴不⊥ AB 连线
上式有三个独立方程,只能求出三个未知数。 上式有三个独立方程,只能求出三个未知数。
注意:不论采用哪种形式的平衡方程, 注意:不论采用哪种形式的平衡方程,其独立的平衡方程的 三个未知量 个数只有三个,对一个物体来讲, 只能解三个未知量,不得多 个数只有三个,对一个物体来讲 只能解三个未知量 不得多 列! 14
8
平面一般力系简化结果的应用 简图:
固定端约束的反力
R
固定端约束反力有三个分量: 两个正交分力, 两个正交分力,一个反力偶
9
第二节
平面一般力系的简化结果分析
R=ΣFi 与简化中心无关 MO =ΣMo(Fi) 与简化中心有关
R ——主矢 主矢 MO——主矩
① R =0, MO =0,力系平衡,与简化中心位置无关,下节专 , 门讨论。 =0,M ② R =0, O≠0 即简化结果为一合力偶, MO=M 此时刚 体等效于只有一个力偶的作用,因为力偶可以在刚体平 面内任意移动,故主矩与简化中心位置无关。 ≠0,M =0,即简化为一个作用于简化中心的合力。这时, ③ R≠0, O =0 简化结果就是合力(这个力系的合力), R = R 。 ( (此时与简化中心有关,换个简化中心,主矩不为零) 此时与简化中心有关, 此时与简化中心有关 换个简化中心,主矩不为零)
R = (∑ X ) 2 + (∑ Y ) 2 = 0
M O = ∑mO ( Fi ) = 0
13
∑
X =0
∑X =0
∑ m A ( Fi ) = 0
∑ m A ( Fi ) = 0 ∑ mB ( Fi ) = 0 ∑ mC ( Fi ) = 0