2平面基本力系讲解
- 格式:ppt
- 大小:1.90 MB
- 文档页数:56
知识点2:平面力系一、平面汇交力系的合成与平衡的几何法(1)平面汇交力系的合成用力多边形法则,合力的大小和方向由力多边形的封闭边来表示,其作用线通过各力的汇交点,即合力等于力系中各力的矢量和,即∑=+++=F F F F F n R 21(2)平面汇交力系的平衡平面汇交力系平衡的必要和充分的几何条件是力多边形自行封闭。
即0==∑F F R二、平面汇交力系的合成与平衡的解析法1.力在坐标轴上的投影力在坐标轴上的投影等于力的模乘以力与投影轴正向间夹角的余弦,如图2-1所示,它是一标量,即θcos F F x =; θβs i n c o s F F y == (2-1)图2-1 图2-22.力沿坐标轴的分解力沿坐标轴的分力是一矢量,其合力与分力之间应满足力的平行四边形公理。
如图2-2所示。
力沿坐标轴分解的分力的大小为xyxyx)sin(sin βθβ+=F F x ; )s i n (s i nβθθ+=F F y(2-2)由此可见,在一般情况下,力沿坐标轴分解的分力的大小不等于力在坐标轴上投影的大小。
当2πβθ=+时,在同一坐标上分力的大小和投影相等,如图2-3所示。
(a )(b )图2-33.合力投影定理合力在某轴上的投影等于各分力在同一轴上投影的代数和,即∑=x Rx F F ; ∑=y Ry F F(2-3)当投影轴x 与y 垂直时,其合力的大小与方向为22RyRx R F F F +=,R RxR F F =),cos(i F ,RRy R F F =),cos(j F (2-4)4.平面汇交力系的合成当两坐标轴间的夹角为2π时有2222)()(∑∑+=+=y x Ry Rx R F F F F F(2-5)RxR F F∑=),cos(i F ,RyR F F∑=),cos(j F5.平面汇交力系的平衡 由几何法知0=R F代入前面的代数表达式有0)()(2222=+=+=∑∑y x Ry Rx R F F F F Fx F y即0=∑xF;0=∑yF(2-6)平面汇交力系平衡的解析条件是力系中各力在两个坐标轴中每一轴上的投影的代数和均等于零。