相贯线的特殊情况两曲面立体相交
- 格式:ppt
- 大小:1.82 MB
- 文档页数:15
第三节两曲面立体相交平面体与回转体相贯回转体与回转体相贯复合相贯一、概述1.相贯的形式两立体相交称作相贯,其表面产生的交线称作相贯线。
本节主要讨论常用不同立体相交时其表面相贯线的投影特性及画法。
平面体与平面体相贯2.相贯线的主要性质1) 共有性相贯线是两立体表面的共有线;2) 分界性相贯线两立体表面的分界线;3) 封闭性相贯线一般是封闭的空间曲线,特殊情况下为平面曲线或直线。
其作图实质是找出相贯的两立体表面的若干共有点的投影。
3.作图方法∙利用投影的积聚性直接找点。
∙用辅助面法。
4. 求相贯线的步骤★空间及投影分析相贯线的空间走向、相贯线的投影范围、作图方法★画出相贯线的投影1)求特殊点极限位置点、转向点、特征点和结合点2)求中间点3)光滑连线,判断可见性★分析、补全轮廓线的投影连线原则:在两立体表面上都处于相邻素线(纬线圆)间的点才能相连。
各投影的连线顺序应一致。
判断可见性的原则:只有当相贯线所属两立体表面对于某一投影面的投影同时为可见时,其投影才为可见,否则为不可见。
解题步骤1)求出相贯线上的特殊点A 、B 、C 、D ;a"b"c"d"1"(2")a'c'd 'b'1'2'12bacd例1:求两圆柱的相贯线2)求出若干个一般点Ⅰ、Ⅱ等;3)光滑且顺次地连接各点,作出相贯线,并且判别可见性;4)整理轮廓线。
完成空间及投影分析:小圆柱轴线垂直于H 面,水平投影积聚为圆,根据相贯线的共有性,相贯线的水平投影即为该圆。
大圆柱轴线垂直于W 面,侧面投影积聚为圆,相贯线的侧面投影在该圆上。
二、表面取点法曲面立体相贯的三种基本形式1.两外表面相交;2.外表面与内表面相交;3.两内表面相交。
以下分别是圆柱外表面与圆柱内表面相贯、圆柱内表面与圆柱内表面相贯的情况。
解题步骤1分析相贯线的水平投影和正面投影已知,可利用表面取点法求其侧面投影;2求出相贯线上的特殊点及若干个一般点,光滑且顺次地连接各点,作出相贯线,并且判别可见性;整理轮廓线。
第五章相贯线两立体表面相交,交线称为相贯线。
准确地画出相贯线的投影能更完整地表达立体。
实际中两立体相交可分为三种情况:平面立体与平面立体相交;平面立体与曲面立体相交;两曲立体相交,如图5-0-1所示。
相贯线有如下性质:1.相贯线一般是封闭的空间折线或曲线。
其形状随两相交立体表面的性质和相对位置的变化而不同。
2.相贯线是两立体表面的共有线,是两立体表面公共点的集合。
求相贯线,也就是求两相交立体表面的公共点。
第三节两曲面立体相交两曲面立体相交,相贯线为封闭的空间曲线,特殊情况为平面曲线。
下面介绍常用的两种方法。
一、表面取点法两回转体相交,如果其中有一个是轴线垂直于投影面的圆柱,则相贯线在该投影面上的投影,就积聚在圆柱面的有积聚性的投影上。
于是可以在这个相贯线有积聚性的投影上取一些点,按已知曲面立体表面上的点的一个投影,求其它投影的方法,即表面取点法,作出相贯线的投影。
例1:如图5-3-1所示,求作两正交圆柱的相贯线。
解:相贯线系两圆柱表面公共点的集合,应在铅垂轴线的小圆柱面上,其水平投影重合在水平投影中的小圆周上;同理相贯线的侧面投影也应重合在侧面投影的大圆周上。
故只有它的正面投影需要画出,可以用已知曲面上点的一个投影求另外投影的方法。
作图步骤如下:(1)先求特殊点,即求相贯线上的最前、最后、最左、最右、最上、最下等点。
在水平投影的小圆周上直接确定出相贯线上最左、最右点的投影1、3和最前、最后点的投影2、4;对应在侧面投影中为1″、3″和2″、4″,也是最高、最低点的侧面投影;按投影关系可得出它们的正面投影1′、3′和2′、4′。
因为两曲面立体前后对称相贯,故最前、最后两点的正面投影重合。
(2)求作若干一般位置点。
依连线光滑准确的需要,作出相贯线上若干个中间点的投影。
如在水平投影上取5、6点,其侧面投影为5″、6″,再求出其正面投影5′和6′。
(3)依次光滑连接1′、5′、2′(4′)、6′、3′各点,即得相贯线的正面投影。
相贯线
两立体相交——相贯
两立体相交表面产生的交线——相贯线
相贯线的主要性质
1、共有性:相贯线是两曲面立体表面的共有线,也是两相交曲面立体的分界线,相贯
线上的点是两曲面立体表面的共有点
2、封闭性:不同的立体及不同的相贯位置,相贯线的形状不同。
两回转体相贯,相贯
线一般是封闭的空间曲线,特殊情况下为平面曲线或直线
3、表面性:
根据相贯的曲面立体不同可分为:
柱柱相贯柱锥相贯柱球相贯锥球相贯
根据圆柱和圆柱轴线的相对位置关系可分为:
柱柱斜贯:两轴线倾斜相交
柱柱偏贯:两轴线垂直交叉
柱柱正贯:两轴线垂直相交
柱柱正贯根据直径大小又可分为:
异径相贯:相贯线为马鞍形(空间曲线)
等径相贯:相贯线为空间为两个椭圆,投影为两段直线(平面曲线)
相贯线的作图方法:表面取点法、近似圆弧法、辅助平面法
表面取点法:黑板画图讲解(课前画好)
近似圆弧法:
两圆柱正贯,如果两圆柱的直径相差比较大时,可以利用近似圆弧代替相贯线。
以大圆柱的半径为半径,以转向轮廓线的交点为圆心,在远离大圆柱轴线的方向上和小圆柱的轴线有一交点A,以交点A为圆心,仍以大圆柱的半径为半径,连接转向轮廓线的交点。
根据相贯体内外表面不同可分为:
两外表面相贯:柱柱相贯可见粗实线
内外表面相贯:柱孔相贯可见粗实线例:
两内表面相贯:孔孔相贯不可见虚线
相贯线永远弯向大圆柱一侧。
第五节 两曲面立体的相贯线[Intersection of Two Curved Surface Solids]两曲面体的相贯线,一般是封闭的空间曲线。
此类相贯线在建筑形体中常常会遇到,例如图5-19所示,它是由一系列柱面相贯所形成的屋顶。
组成相贯线的所有点,均为两曲面体表面的共有点。
因此求相贯线时,要先求出一系列的共有点,然后用曲线板依次连接所求各点,即得相贯线。
求共有点时,应先求出相贯线上的特殊点,即最高、最低、最左、最右、最前、最后及转向轮廓线上的点等,然后再求出其上的一般位置点。
一、求相贯线常用的两种方法 [Two Commonly Used Methods to Find Intersection Line ](一) 利用曲面的积聚投影,用表面取点法作出相贯线相交两曲面之一,如果有一个投影具有积聚性,就可以利用该曲面的积聚性投影作出两曲面的一系列公有点,然后连成相贯线。
因为如果有一个曲面的某投影具有积聚性,相贯线在此投影面上的投影就已知,求相贯线的其余投影,实质上就是根据这一已知投影在另一立体的表面取点。
因此,此法也叫表面取点法。
例5-10 已知两半圆柱屋面相交,求它们的交线,如图5-20所示。
投影分析:由图5-20可知:屋面的大拱是半圆柱面,小拱则也是半圆柱面。
前者素线垂直于W 面,后者素线垂直于V 面,两拱轴线相交且平行于H 面。
相贯线是一段空间曲线,其V 面投影重影在小圆柱的V 面投影上,W 面投影重影在大拱的W 面投影上,相贯线的H 面投影为曲线,可通过求出相贯线上一系列的点而作出。
图5-19由柱面相贯构成的屋面作图步骤(图5-20):(1) 求特殊点。
最高点A 是小圆柱最高素线与大拱的交点,最低、最前点B 、C (也 是最左、最右点),是小圆柱最左、最右素线与大拱最前素线的交点。
它们的三投影均可直接求得。
(2) 求一般点E 、F 。
在相贯线V 面投影的半圆周上任取点e ′和f ′。