调相 调制1
- 格式:doc
- 大小:267.00 KB
- 文档页数:18
数字通信信号调制方式识别与参数估计数字通信信号调制方式识别与参数估计1. 背景介绍在数字通信中,信号调制方式的识别和参数估计是至关重要的环节。
通过识别和估计调制方式和参数,可以有效地解调信号,从而实现可靠的数据传输和通信。
本文将深入探讨数字通信信号调制方式的识别与参数估计,并提供相关的个人观点和理解。
2. 信号调制方式的分类和特点数字通信中常见的信号调制方式包括调幅调制(AM)、调频调制(FM)、调相调制(PM)、正交振幅调制(QAM)等。
每种调制方式都有其独特的特点和应用场景。
在进行信号调制方式识别时,需要结合信号的频谱特征、相位特征、幅度特征等进行综合分析,以确定信号所采用的调制方式。
3. 信号调制方式的识别方法为了准确识别信号的调制方式,可以采用自相关函数、功率谱密度、频谱特性等方法进行分析。
其中,自相关函数可以用于判断信号的周期性特征,进而推断出可能的调制方式;功率谱密度则可以反映信号的频谱特性,帮助确定信号所采用的调制方式。
还可以结合机器学习算法,如支持向量机(SVM)、深度学习等方法,提高对信号调制方式的准确识别率。
4. 参数估计的重要性及方法对于已识别出调制方式的信号,还需要进行参数估计,包括载波频率、信号相位、调制指数等参数的估计。
参数估计的准确性直接影响到信号的解调效果和通信性能。
常用的参数估计方法有最大似然估计法、最小均方误差估计法等,通过对信号进行模型拟合和参数优化,得到准确的参数估计结果。
5. 个人观点和理解在进行数字通信信号调制方式识别与参数估计时,我认为除了理论知识的掌握外,还需要结合实际场景进行分析和应用。
对于复杂多变的通信环境,传统的识别与估计方法可能存在局限性,因此需要不断探索创新的方法和技术,以提高对信号调制方式的准确识别和参数估计能力。
总结通过对数字通信信号调制方式识别与参数估计的探讨,我们深入了解了其在数字通信中的重要性和方法。
在实际应用中,需要根据具体情况选择合适的识别与估计方法,不断优化和改进算法,以实现更可靠、高效的数字通信系统。
ASK、FSK、PSK、QAM数字调制技术1934年美国学者李佛西提出脉冲编码调制(PCM)的概念,从此之后通信数字化的时代应该说已经开始了,但是数字通信的高速发展却是20世纪70年代以来的事情。
随着时代的发展,用户不再满足于听到声音,而且还要看到图像;通信终端也不局限于单一的电话机,而且还有传真机和计算机等数据终端。
现有的传输媒介电缆、微波中继和卫星通信等将更多地采用数字传输。
而这些系统都使用到了数字调制技术,本文就数字信号的调制方法作一些详细的介绍。
一数字调制数字信号的载波调制是信道编码的一部分,我们之所以在信源编码和传输通道之间插入信道编码是因为通道及相应的设备对所要传输的数字信号有一定的限制,未经处理的数字信号源不能适应这些限制。
由于传输信道的频带资源总是有限的,因此提高传输效率是通信系统所追求的最重要的指标之一。
模拟通信很难控制传输效率,我们最常见到的单边带调幅(SSB)或残留边带调幅(VSB)可以节省近一半的传输频带。
由于数字信号只有"0"和"1"两种状态,所以数字调制完全可以理解为像报务员用开关电键控制载波的过程,因此数字信号的调制方式就显得较为单纯。
在对传输信道的各个元素进行最充分的利用时可以组合成各种不同的调制方式,并且可以清晰的描述与表达其数学模型。
所以常用的数字调制技术有2ASK、4ASK、8ASK、BPSK、QPSK、8PSK、2FSK、4FSK等,频带利用率从1bit/s/Hz~3bit/s/Hz。
更有将幅度与相位联合调制的QAM技术,目前数字微波中广泛使用的256QAM的频带利用率可达8bit/s/Hz,八倍于2ASK或BPSK。
此外,还有可减小相位跳变的MSK等特殊的调制技术,为某些专门应用环境提供了强大的工具。
近年来,四维调制等高维调制技术的研究也得到了迅速发展,并已应用于高速MODEM中,为进一步提高传输效率奠定了基础。
总之,数字通信所能够达到的传输效率远远高于模拟通信,调制技术的种类也远远多于模拟通信,大大提高了用户根据实际应用需要选择系统配置的灵活性。
无线通信系统中的调制解调基础(二):相位调制作者:Ian PooleAdrio Communications Ltd第二部分解释了相移键控(PSK)的多种形式,包括双相相移键控(BPSK),四相相移键控(QPSK),高斯滤波最小相移键控(GMSK),和目前流行的正交幅度调制(QAM)。
第一部分解释了调幅(AM)和调频(FM)技术,并介绍了其优点和缺点。
第三部分将会介绍直接序列扩频(DSSS)技术和正交频分复用(OFDM)调制技术。
调相相位调制是另一种广泛采用的调制技术,特别是在数据传输的应用中。
因为相位和频率是相辅相成的(频变是相变的一种形式),两种调制方法可以用角度调制(angle modulation)来概括。
为了解释调相如何工作,我们首先要对相位做出解释。
一个无线信号包涵了一个正弦信号的载波,幅度从正到负程波浪形变化,一个周期后回到零点,这个同样可以由一个围绕一个零点旋转的一个点来表示,如图3-13所示,相位就是终点到起点的角度。
调相改变了信号的相位,换句话来说,图中绕着原点旋转的点的位置会改变,要实现这个效果既是要在短时间内改变信号的频率。
所以,当进行相位调制的时候会产生频率的改变,反之亦然。
相位和频率是密不可分的,因为相位就是频率的积分,频率调制可以通过简单的CR网络转变成相位调制。
因此,相位调制与频率调制信号的边带、带宽具有异曲同工的效果,我们必须留意这个关系。
相移键控相位调制可以用来传输数据,而相移键控是很常用的。
PSK在带宽利用率上有很多优势,在许多移动电话无线通信的应用中广为采用。
最基本的PSK方法被称作双相相移键控(BPSK),有时也称作反向相位键控(PRK)。
一个数字信号在1和0之间改变(或表述为1和-1),这样形成了相位反转,就是180°的相移,如图3-14。
双相相移键控(BPSK)PSK的一个问题是接收机不能精确的识别传输的信号,来判定是mark(1)还是space (0),即使发射机和接收机的时钟同步也很难实现,因为传输路径会决定接受信号的精确相位。
各种基本调制信号的带宽关系1. 引言1.1 概述概述部分的内容可以如下所示:在通信领域中,基本调制信号是指通过改变信号的某些特性来传输信息的一种方式。
常见的基本调制信号包括调幅信号、调频信号和调相信号,它们分别通过改变信号的幅度、频率和相位来实现信息的传输。
这些调制信号在实际应用中具有不同的带宽关系,即信号占用的频带范围,对通信系统的性能和资源利用有着重要影响。
本文旨在深入探讨各种基本调制信号的带宽关系,通过对其特性和调制方式的分析,揭示它们之间的差异和联系。
理解基本调制信号的带宽关系对于设计和优化通信系统非常重要,可以提高信息传输的效率和可靠性。
在接下来的几个章节中,我们将针对每种调制信号分别进行讨论。
首先,我们将讨论调幅信号的带宽关系,即调幅信号在频域上的能量分布情况。
接着,我们将深入研究调频信号和调相信号的带宽关系,分析它们在频域上的特点以及与调幅信号的异同。
此外,我们还将探讨调幅调频信号、调幅调相信号和调频调相信号的带宽关系,探究它们在频域上的相互作用。
最后,我们将在结论部分总结各种基本调制信号的带宽关系,并展望调制信号带宽关系的应用前景。
通过对基本调制信号带宽关系的深入理解和研究,我们可以为未来通信系统的设计和优化提供更好的参考和指导,进一步提高通信技术的发展水平。
通过本文的阐述,读者将能够全面了解各种基本调制信号的带宽关系,为实际应用中的通信系统设计和优化提供指导和参考。
同时,对于相关领域的研究人员和工程师来说,本文也将是一个重要的参考资料,促进通信技术的发展和进步。
文章结构部分的内容可以参考以下编写:1.2 文章结构本文主要探讨各种基本调制信号的带宽关系。
为了便于读者理解和掌握相关概念,本文将按照以下结构进行论述:第一部分是引言部分。
在引言部分,我们将对本文的内容进行概述,包括各种基本调制信号的定义和特点,并介绍文章的目的和意义。
第二部分是正文部分。
正文部分将详细探讨各种基本调制信号的带宽关系。
通信系统中的频率调制方法通信系统是现代社会中相当重要的一种信息传输工具。
为了保证信息的准确传递和高效利用,通信系统中采用了多种频率调制方法。
本文将详细介绍通信系统中的频率调制方法,并列出相应的步骤。
一、频率调制方法的定义频率调制是指将一定频率的载波信号与原始信号相结合,通过改变载波信号的频率来传递信息的一种调制方式。
常见的频率调制方法包括调频(FM)调制和调相(PM)调制。
二、调频(FM)调制方法及步骤1. 调频(FM)调制方法的原理调频调制方法是通过改变载波信号的频率来传递信息。
原始信号的幅度不变,而是通过改变载波信号频率的偏移量来表示信息。
2. 调频(FM)调制的步骤步骤一:将原始信号进行频率预调制,将其进行归一化处理。
步骤二:生成用于调制的载波信号。
步骤三:将归一化的原始信号与载波信号相乘得到调制信号。
步骤四:将调制信号进行频谱整形。
步骤五:将调制信号经过发射机发送。
三、调相(PM)调制方法及步骤1. 调相(PM)调制方法的原理调相调制方法通过改变载波信号相位的偏移来传递信息。
原始信号的幅度和频率不变,但通过改变相位的偏移来表示信息。
2. 调相(PM)调制的步骤步骤一:将原始信号进行幅度归一化处理。
步骤二:生成用于调制的载波信号。
步骤三:将归一化的原始信号与载波信号相乘得到调制信号。
步骤四:将调制信号进行相位偏移处理。
步骤五:将调制信号经过发射机发送。
四、其他频率调制方法除了调频(FM)调制和调相(PM)调制外,还存在其他频率调制方法,如幅频调制(AM)和振幅调制(QAM)等,这些方法的原理和步骤略有不同,但基本思想都是通过改变载波信号的频率来传递信息。
总结:频率调制方法是通信系统中常用的一种调制方式。
调频(FM)调制通过改变载波信号的频率来传递信息,而调相(PM)调制则是通过改变载波信号的相位来表示信息。
其他频率调制方法也是在这个基本思想上进行改变而来。
了解和掌握这些频率调制方法对于理解通信系统的工作原理具有重要意义。
调制的方法调制是指在传输过程中在信号上叠加一定的高频信号,并将原始信号与高频信号混合在一起,以便在传输过程中减小信号的失真和传输损耗,从而更好地保持信号的完整性。
常见的调制方法有模拟调制和数字调制两种。
一、模拟调制:1.调幅(AM)调制:调幅是通过改变原始信号的振幅来调制的。
将原始信号与高频载波信号相乘,通过调制后的信号的振幅的变化来表示原始信号的信息。
2.调频(FM)调制:调频是通过改变原始信号的频率来调制的。
将原始信号与高频载波信号的频率相加,通过调制后的信号的频率的变化来表示原始信号的信息。
3.调相(PM)调制:调相是通过改变原始信号相位的变化来调制的。
将原始信号与高频载波信号相乘,通过调制后的信号的相位的变化来表示原始信号的信息。
二、数字调制:1.脉冲调制(PCM):将连续的模拟信号转换成离散的数字信号。
将连续的模拟信号按照一定的采样频率进行采样,将采样值转化为离散的数字码,再将数字码用脉冲串表示。
2.频移键控(FSK)调制:将数字信号的0和1分别对应于两个不同频率的载波信号,通过改变载波信号的频率来表示数字信号的信息。
3.相位移键控(PSK)调制:将数字信号的0和1分别对应于两个不同的相位状态,通过改变相位状态来表示数字信号的信息。
4.正交调幅(QAM)调制:将数字信号的0和1分别对应于两个不同的相位和两个不同的幅度,通过改变相位和幅度的组合来表示数字信号的信息。
总结来说,调制的方法很多,根据需要选择合适的调制方式。
模拟调制适用于模拟信号的传输,数字调制适用于数字信号的传输。
调制可以提高信号的传输质量和传输距离,并且可以提高信号的抗干扰能力,保证信号的准确传输。
2023年电赛d题信号调制方式识别与参数估计装置2023年电赛d题信号调制方式识别与参数估计装置一、引言2023年电赛d题将会围绕信号调制方式识别与参数估计装置展开,这是一个极具挑战性的课题,也是当前通信与信息领域中备受关注的研究方向之一。
信号调制是指将要传输的数字信号通过一定的调制方式转换成模拟信号的过程,而参数估计装置则是用来对信号进行参数分析和估计的设备。
如何准确识别信号的调制方式,并进行有效的参数估计,是当前通信工程领域亟需解决的重要问题之一。
二、信号调制方式的识别1. 信号调制方式的分类在进行信号调制方式识别之前,首先需要对常见的信号调制方式有所了解。
常见的信号调制方式主要包括调幅调制(AM)、调频调制(FM)、调相调制(PM)、正交幅度调制(QAM)等。
这些调制方式在实际的通信系统中都有着广泛的应用,因此在识别过程中需要兼顾不同调制方式的特点和特征。
2. 识别方法与技术为了准确识别信号的调制方式,可以采用多种方法和技术。
常见的识别方法包括基于统计特征的识别方法、基于信号频谱特性的识别方法、基于人工智能算法的识别方法等。
其中,基于人工智能算法的识别方法具有较高的准确性和鲁棒性,是当前研究的热点之一。
三、参数估计装置的设计与应用1. 参数估计的重要性在实际的通信系统中,对信号参数进行准确的估计是保证通信质量的关键之一。
参数估计主要包括对信号的频率、幅度、相位等参数进行准确的估计。
只有通过有效的参数估计,才能保证信号的传输和接收的准确性和可靠性。
2. 参数估计装置的设计针对参数估计的需求,研究人员提出了基于不同算法和技术的参数估计装置。
这些装置通常包括信号采集模块、信号处理算法模块和参数估计输出模块等部分。
通过对信号的采集和处理,再结合合适的参数估计算法,可以实现对信号参数的有效估计。
四、个人观点与总结作为一名从事通信工程研究的工程师,我对信号调制方式识别与参数估计装置有着较为深刻的理解和实践经验。
现代移动通信中的调制技术通信2班陈铭铎15号调制技术的概念在移动通信中,信源产生的原始信号绝大部分需要经过调制,变换为适合于在信道内传输的信号,才能在线路中传输。
把输入信号变换为适合于通过信道传输的波形,这一变换过程成为调制。
通常把原始信号称为调制信号,也称基带信号;被调制的高频周期性脉冲起运载原始信号的作用,因此称载波。
调制技术其实也就是实现了信源与信道的频带匹配。
调制技术的主要功能1.频率变换:为了采用无线传送方式,如将(0.3MHz~3.4kHz)有效带宽内的信号调制到高频段上去。
2.实现信道复用:例如将多路型号互不干扰地安排在同一物理信道中传输。
3.提高抗干扰性:抗干扰性(即可靠性)与有效性互相制约,通常可通过牺牲有效性来提高抗干扰性,如FM替代AM。
调制原理形式调幅、调频和调相是调制的三种基本形式。
1.调幅(AM):用调制信号控制载波的振幅,使载波的振幅随着调制信号变化。
已调波称为调幅波。
调幅波的频率仍是载波频率,调幅波包络的形状反映调制信号的波形。
调幅系统实现简单,但抗干扰性差,传输时信号容易失真。
2.调频(FM):用调制信号控制载波的振荡频率,使载波的频率随着调制信号变化。
已调波称为调频波。
调频波的振幅保持不变,调频波的瞬时频率偏离载波频率的量与调制信号的瞬时值成比例。
调频系统实现稍复杂,占用的频带远较调幅波为宽,因此必须工作在超短波波段。
抗干扰性能好,传输时信号失真小,设备利用率也较高。
3.调相(PM):用调制信号控制载波的相位,使载波的相位随着调制信号变化。
已调波称为调相波。
调相波的振幅保持不变,调相波的瞬时相角偏离载波相角的量与调制信号的瞬时值成比例。
在调频时相角也有相应的变化,但这种相角变化并不与调制信号成比例。
在调相时频率也有相应的变化,但这种频率变化并不与调制信号成比例。
在模拟调制过程中已调波的频谱中除了载波分量外在载波频率两旁还各有一个频带,因调制而产生的各频率分量就落在这两个频带之内。
高频电子线路High Frequency Electronic Circuit课程设计报告题目:调相调制专业:2007级通信工程(2)班学院:电气工程学院目录摘要 (3)第一章绪论 (4)1. 设计的目的和意义 (4)1.1设计目的 (4)1.2 设计意义 (4)2. 设计的内容 (5)2.1问题的提出 (5)2.2 主要性能指标 (5)2.3 设计要求 (6)第二章工作原理 (6)1. 调相信号原理分析 (6)1.1 调角信号频谱及频带宽度 (7)2. 调相和调频的联系和方法 (8)2.1 直接调频法 (8)2.2 间接调频法 (9)2.3 收音机基本工作电路图 (9)2.5 输入调谐电路 (10)2.6 输入调制电路 (11)2.7 信号的接收 (11)2.8 电路的抗干扰性能说明 (12)2.9 变容二极管直接调角相关电路: (13)第三章系统的测试及误差分析 (15)3.1 测试数据 (15)3.2 误差分析和改善措施 (15)第四章总结 (16)参考文献 (17)附录: (18)调相调制——信号的调制摘要调频(调相)收音机(FM/PM Radio)一直在人们的生活娱乐中占有非常重要的地位。
从老式的晶体管收音机到今天的网络收音机,说明通过广播享受生活一直是人们喜欢的生活方式。
如今,随着消费类电子的兴起和繁荣以及数字电子的发展,广大从事消费类电子设计的厂商都不忘在诸如MP3、智能手机、便携式Video播放器等产品中嵌入FM/PM部分。
传统的调频解决方案存在电路体积大、调谐不方便、稳定性欠佳等弊端。
本文介绍了数字调频立体声收音机的设计与实现。
其解决了传统的调频方案中体积大、调谐不方便、稳定性不好等这些缺点。
在本文中主要介绍了该设计的硬件电路、软件设计流程、系统测试。
关键词:收音机,调频/调相,设计原理,电路图ABSTRACTFM (PRCPM) Radio (FM/PM me) has been in the life of people entertainment plays a very important role. From the old transistor radio to today's Internet radio, through the radio to enjoy life is like the way of life. Nowadays, with the rise of consumer electronics and prosperity and development of digital electronics, in the consumer electronics manufacturers are not forgotten the design such as MP3, smartphone, portable Video player embedded products such as FM/PM parts. The traditional FM solutions exist circuit is big and poor stability, attune inconvenient. Article introduces digital FM stereo radio design and implementation. The solution of the traditional FM scheme is big and goodstability, convenient attune such these shortcomings. In this paper mainly introduces the design of hardware circuit and software design process, system test.Keywords:The radio Digital FM/phase-modulation The principle of design Circuit diagram第一章绪论1. 设计的目的和意义1.1设计目的(1)学习信号的调制基本原理。
(2)掌握信号的调制相关的电路的组成。
(3)掌握用仿真软件仿真出实验电路图。
(4)掌握利用调角实现收音机的工作原理。
1.2 设计意义调制就是对信号源的信息进行处理,使其变为适合于信道传输的形式的过程。
一般来说,信号源的信息(也称为信源)含有直流分量和频率较低的频率分量,称为基带信号。
基带信号往往不能作为传输信号,因此必须把基带信号转变为一个相对基带频率而言频率非常高的信号以适合于信道传输。
这个信号叫做已调信号,而基带信号叫做调制信号。
调制是通过改变高频载波的幅度、相位或者频率,使其随着基带信号幅度的变化而变化来实现的。
而解调则是将基带信号从载波中提取出来以便预定的接收者(也称为信宿)处理和理解的过程。
调制在整个通信过程中是最基本、最重要的一个处理信号方法,在通信系统中,对模拟基带信号进行调制的目的就是为了让多个基带信号经过调制后在有线信道上同时传输,同时也适合于在无线信道中实现频带信号的传输;并且还能增强信号的抗噪声能力。
因此,调制的意义可概括为减小干扰,提高系统抗干扰能力,同时还可实现传输带宽与信噪比之间的互换。
2. 设计的内容2.1问题的提出设计一个电路,能够基本调制其接收到的调制信号(以收音机为例)。
2.2 主要性能指标收音机质量的高低是用其性能指标来衡量的。
国家标准中规定的指标很多,我就其重要的几项作一介绍。
1.灵敏度收音机正常工作(即输出功率和输出信噪比达到额定值)时,天线上感应的最小信号(场强或电势)称为灵敏度。
它反映收音机接收微弱信号的能力。
使用磁性天线接收信号时,用电场强度来表示,其单位是mV/m,一般中波段收音机的灵敏度应不劣于2mV /m;使用外接天线或拉杆天线时,灵敏度用电势表示,单位是μV。
2.选择性收音机抑制邻近电台信号干扰、选择有用信号的能力称为选择性。
它反映收音机选择电台的能力。
调幅广播电台的中心频率是按9kHz间隔来分布的,故收音机的选择性通常用输入信号失谐±9kHz 时,灵敏度的衰减程度来衡量,一般要求收音机的选择性大于20dB 。
3.失真度 收音机输出波形与输入波形相比失真的程度称为失真度。
收音机中对音质有影响的主要是频率失真和非线性失真。
4.波段覆盖范围 收音机所能接收的载波频率范围。
调幅收音机的中波段频率范围为535~1605kHz ,而短波范围则为1.6─26 MHz,调频收音机的覆盖范围为88─108 MHz。
2.3 设计要求根据其主要性能指标要求和实验条件,初步设计出实验原理电路图并分析其工作原理。
第二章 工作原理1. 调相信号原理分析根据调相波定义,载波信号的瞬时相位随调制信号 线性变化,即(1) 式中,为与调相电路有关的比例常数,单位是rad /v 。
令 则表示瞬时相位中与调制信号成线性变化的部分,称为瞬时相位的相位偏移量,简称相移。
用 表示最大相移,则 (2) ,称为调相波的调相指数,根据瞬时频率和瞬时相位之间的关系可知,对式两边求导,可得调相波的瞬时频率:(3) ()cos p c p m t t k U tϕωΩ=+Ωp k ()cos p p m t k U tϕΩ∆=Ωp m max ()p p m k u t Ω=p m ()()()p c p d t du t t k dt dtϕωωΩ==+调相波数学表达式为:(4) 将单音频调制信号分别代入式(1)、(2)、(3)和(4)式中得调相波相关参数如下: 相移表达式:角频偏表达式: 数学表达式:1.1 调角信号频谱及频带宽度(1)调相波和调频波的频谱以调频信号的数学表达式说明调角信号的频谱结构特点将上式展开为傅立叶级数,省略级数展开时所涉及的数学推导,可得到调频波的展开式:单频调制情况下,调频波和调相波课分解为再拼和无穷多上下边频分量之和,各频率分量之间的距离均等于调制频率,且奇数次的上下边频相位相反,包括载频分量在内的各频率分量的振幅均由贝塞尔函数Jn (Mf )决定。
不论Mf 为何值,随着阶数n 的增大,边频分量的振幅总的趋势是减小的;Mf 越大,具有的较大振幅的边频分量就越多;对与某些Mf 值,载频或某些边频分量的振幅为零,可以测量调频波和调相波的调制指数。
对于调制信号为包含多频率分量的多频率调制情况,调频波和调相波的频谱结构将更复杂,这时不但存在调制信号各频率分量的各阶与载频的组合,还存在调制信号各频率分量间相互组合与载频之间产生的无穷多个组合()cos ()pM cm c p u U t t ωϕ=+∆()cos ()cm c p U t k u t ωΩ=+()cos p p m t k U t ϕΩ∆=Ωcos P m t =Ω()sin p p t m tω∆=-ΩΩcos(cos )pM cm c p u U t m t ω=+Ωcos(sin )FM cm c f u U t m t ω=+Ω∑+∞-∞=+=n c f n cm FM t )n (Cos )m (J U )t (u Ωω形成的边频分量。
(2)有效频带宽度所谓窄带调频是指最大频偏小于基带频率 ,所谓宽带调频是指最大频偏大于基带频率 。
基于调频波频谱结构的特点,调角信号的有效频谱宽度,可由卡森(Carson )公式给出:调相波频带: 可见,调频波和调相波的有效频带宽度与它们的调制系数m 有关,m 越大,有效频带越宽。
但是,对于同一个调制信号对载波进行调频和调相时,两者的频带宽度因Mf 和Mp 的不同而互不相同。
2. 调相和调频的联系和方法根据调频波的数学表达式 和调相波的数学表达式可以看出FM 和PM 两者之间的关系,即调频波可以看成调制信号为 ∫V(t)dt 的调相波,而调相波则可以看成调制信号为dv(t)/dt 的调频波。
根据分析可知,当调制信号频率F 发生变化时,调频波的调制指数Mf 与F 成反比变化,其频带宽度基本不变,故称恒带调制。
而当调制信号频率F 变化时,调相波的调制指数Mp 与F 无关,其频带宽度随调制频率F 变化。
2.1 直接调频法2(1)CR P BW m F=+0cos ()cos ()t FM cm c f cm c f u U t t U t u t dt ωϕωκΩ⎡⎤⎡⎤=+=+⎣⎦⎢⎥⎣⎦⎰()cos ()pM cm c p u U t t ωϕ=+∆()cos ()cm c p U t k u t ωΩ=+变容二极管直接调频原理图2.2 间接调频法间接调频法原理框图2.3 收音机基本工作电路图2.4 收音机基本工作框图2.5 输入调谐电路从接收天线到变频管输入端之间的电路叫输入电路。