强调制型光纤传感器
- 格式:pptx
- 大小:3.99 MB
- 文档页数:85
调制型光纤传感器的工作原理调制型光纤传感器是一种利用光纤作为传感元件的传感器,它通过调制光纤中的光信号来实现对外界物理量的测量。
它的工作原理主要包括光纤传输、光调制和光检测三个部分。
光纤传输是调制型光纤传感器的基础。
光纤是一种具有非常低损耗的传输介质,其内部由一个或多个纤维芯和包围在外的包层组成。
通过光纤,光信号可以在纤芯中以全内反射的方式进行传输。
光纤的纤径一般非常小,通常为几个微米至几十个微米,因此可以方便地安装在不同的环境中。
光调制是调制型光纤传感器的关键步骤。
光调制是指通过改变光信号的某些特性来实现对外界物理量的测量。
常用的光调制方式有幅度调制、相位调制和频率调制等。
其中,幅度调制是最常用的方式,它通过改变光信号的强度来传递传感器所测量的物理量信息。
相位调制则是通过改变光信号的相位来传递信息,频率调制则是通过改变光信号的频率来传递信息。
这些调制方式可以根据具体的应用需求来选择。
光检测是调制型光纤传感器的最后一步。
光检测是指通过光电探测器将调制后的光信号转换为电信号,以便进一步处理和分析。
常用的光电探测器有光电二极管(PD)和光电倍增管(PMT)等。
光电探测器可以将光信号的强度、相位或频率等信息转换为电流或电压信号,进而实现对外界物理量的测量。
调制型光纤传感器的工作原理可以通过一个简单的温度测量实例来说明。
假设我们需要测量一个物体的温度,可以将一个光纤传感器安装在物体表面附近。
当物体的温度发生变化时,光纤传感器会受到温度的影响而发生形变,从而改变光纤中的传输特性。
例如,温度升高会导致光纤的折射率发生改变,进而改变光信号的传输速度。
通过对这种速度变化进行测量和分析,就可以得到物体的温度信息。
调制型光纤传感器通过调制光纤中的光信号来实现对外界物理量的测量。
它的工作原理主要包括光纤传输、光调制和光检测三个部分。
通过合理选择光调制方式和光电探测器,可以实现对各种物理量的测量,例如温度、压力、形变等。
什么是光纤传感器_光纤传感器分类
光纤传感器简介光纤最早是应用于光的传输,适合长距离传递信息,是现代信息社会光纤通信的基石。
光波在光纤中传播的特征参量会因外界因素的作用而间接或直接地发生变化,由此光纤传感器就能分析探测这些物理量、化学量和生物量的变化。
光纤传感器由光源、入射光纤、出射光纤、光调制器、光探测器以及解调制器组成。
其基本原理是将光源的光经入射光纤送入调制区,光在调制区内与外界被测参数相互作用,使入射光的某些光学性质(如强度、波长、频率、相位、偏正态等)发生变化而成为被调制的信号光,再经出射光纤送入光探测器、解调器而获得被测参数。
光纤传感器的分类光纤传感器按结构类型可分两大类:一类是功能型(传感型)传感器;另一类是非功能性(传光型)传感器。
(1)功能型光纤传感器利用对外界信息具有敏感能力和检测能力的光纤(或特殊光纤)作为传感元件,对光纤内传输的光进行调制,使传输的光的强度、相位、频率或偏振态等特性发生变化,再通过被调制过的信号进行解调,从而得出被测信号。
光纤在其中不仅是导光媒质,而且也是敏感元件,多采用多模光纤。
优点:结构紧凑,灵敏度高。
缺点:须用特殊光纤,成本高。
典型应用:光纤陀螺、光纤水听器等。
(2)非功能型传感器是利用其它敏感元件感受被测量的变化,光纤仅作为信息的传输介质,常采用单模光纤。
光纤在其中仅起导光作用,光照在光纤型敏感元件上被测量调制。
优点:无需特殊光纤及其他特殊技术,比较容易实现,成本低。
缺点:灵敏度较低。
实用化的大都是非功能型的光纤传感器根据被调制的光波的性质参数不同,这两类光纤传。
一:填空题(每空1分)1.依据传感器的工作原理,传感器分敏感元件,转换元件,测量电路三个部分组成。
2.半导体应变计应用较普遍的有体型、薄膜型、扩散型、外延型等。
3.光电式传感器是将光信号转换为电信号的光敏元件,根据光电效应可以分为外光电效应,内光电效应,热释电效应三种。
4.光电流与暗电流之差称为光电流。
5.光电管的工作点应选在光电流与阳极电压无关的饱和区域内。
6.金属丝应变传感器设计过程中为了减少横向效应,可采用直线栅式应变计和箔式应变计结构。
7.反射式光纤位移传感器在位移-输出曲线的前坡区呈线性关系,在后坡区与距离的平方成反比关系。
8.根据热敏电阻的三种类型,其中临界温度系数型最适合开关型温度传感器。
9.画出达林顿光电三极管内部接线方式:U10.灵敏度是描述传感器的输出量对输入量敏感程度的特性参数。
其定义为:传感器输出量的变化值与相应的被测量的变化值之比,用公式表示k(x)=Δy/Δx 。
11.线性度是指传感器的输出量与输入量之间是否保持理想线性特性的一种度量。
按照所依据的基准之线的不同,线性度分为理论线性度、端基线性度、独立线性度、最小二乘法线性度等。
最常用的是最小二乘法线性度。
12.根据敏感元件材料的不同,将应变计分为金属式和半导体式两大类。
13.利用热效应的光电传感器包含光---热、热---电两个阶段的信息变换过程。
14.应变传感器设计过程中,通常需要考虑温度补偿,温度补偿的方法电桥补偿法、计算机补偿法、应变计补偿法、热敏电阻补偿法。
15. 应变式传感器一般是由 电阻应变片 和 测量电路 两部分组成。
16. 传感器的静态特性有 灵敏度 、线性度、灵敏度界限、迟滞差 和稳定性。
17. 在光照射下,电子逸出物体表面向外发射的现象称为 外光电效应 ,入射光强改变物质导电率的物理现象称为 内光电效应 。
18. 光电管是一个装有光电 阴极 和 阳极 的真空玻璃管。
19. 光电管的频率响应是指一定频率的调制光照射时光电输出的电流随频率变化的关系,与其物理结构、工作状态、负载以及入射光波长等因素有关。
光纤传感器分为几大类
光纤传感器分类
根据光纤在传感器中的作用分
1、功能型(全光纤型)光纤传感器
利用对外界信息具有敏感能力和检测能力的光纤(或特殊光纤)作传感元件,将“传”和“感”合为一体的传感器。
光纤不仅起传光作用,而且还利用光纤在外界因素(弯曲、相变)的作用下,其光学特性(光强、相位、偏振态等)的变化来实现“传”和“感”的功能。
因此,传感器中光纤是连续的。
由于光纤连续,增加其长度,可提高灵敏度。
2、非功能型(或称传光型)光纤传感器
光纤仅起导光作用,只“传”不“感”,对外界信息的“感觉”功能依靠其他物理性质的功能元件完成。
光纤不连续。
此类光纤传感器无需特殊光纤及其他特殊技术,比较容易实现,成本低。
但灵敏度也较低,用于对灵敏度要求不太高的场合。
强度调制型
波长(颜色)调制型
(a)波长调制原理(b)热变色溶液光强与温度关系曲线
热色物质波长调制原理图
有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺) 频率调制型
基于多普勒效应的频率调制原理
(可以用来测量血液流速)
相位调制型
(a)迈克尔逊干涉仪(b)马赫-泽德干涉仪
(c)赛格纳克干涉仪(d)法布里-珀罗干涉仪
偏振态调制型
功能型光纤传感器
法拉第磁光效应:平面偏振光通过带磁性的物体时,其偏振光面将发生偏转。
有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺)
法拉第磁光效应实验装置
磁场
偏振光片
磁光材料
L
θ
检偏片
光源
光弹效应:在垂直于光波传播方向施加压力,材料将会产生双折射现象,其强弱正比于应力。
偏振光的相位变化:
2λπϕ/kpl =式中k ——物质光弹性系数;
P ——施加在物体上的压强;l ——光波通过的材料长度。
有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺)
应变材料F
检偏器
光源
F
起偏器补偿器
光弹效应实验装置
有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺) 传光型光纤传感器
光转换元件检测量
液晶温度、压力、振动
半导体膜温度等
波克尔斯元件电场、电压
法拉第元件磁场、电流
光弹性元件压力、温度、应变、音响
荧光物质放射线等
遮光光路位移、振动、旋转等
电子电路电磁场、其它。
光纤传感器的分类及其应用原理一、本文概述光纤传感器是一种基于光纤技术的高精度、高灵敏度的测量装置,具有广泛的应用前景。
本文旨在全面介绍光纤传感器的分类及其应用原理。
我们将首先概述光纤传感器的基本概念和分类,然后深入探讨各类光纤传感器的应用原理,以及它们在不同领域中的实际应用。
通过阅读本文,读者将能够更深入地理解光纤传感器的工作原理和应用领域,为相关研究和应用提供有益的参考。
在本文中,我们将重点关注光纤传感器的分类,包括基于干涉原理的传感器、基于光强调制的传感器、基于偏振态的传感器等。
每种类型的光纤传感器都有其独特的工作原理和应用场景。
我们将逐一分析这些传感器的工作原理,以及它们在通信、环境监测、医疗健康、军事等领域中的应用实例。
我们还将关注光纤传感器的优势与挑战。
光纤传感器具有抗电磁干扰、灵敏度高、传输距离远等优点,但同时也面临着成本、可靠性等方面的挑战。
我们将对这些问题进行深入探讨,以期为读者提供全面的光纤传感器知识。
本文旨在全面介绍光纤传感器的分类及其应用原理,帮助读者更好地理解和应用光纤传感器技术。
我们希望通过本文的阐述,能够激发读者对光纤传感器技术的兴趣,推动相关研究和应用的发展。
二、光纤传感器的分类光纤传感器按照其工作原理和传感机制的不同,大致可以分为以下几类:强度调制型光纤传感器:这类传感器主要利用光强的变化来感知外界的物理量,如温度、压力、位移等。
当外界物理量作用于光纤时,会导致光纤中的光强发生变化,通过测量这种变化,就可以实现对物理量的测量。
相位调制型光纤传感器:相位调制型光纤传感器主要利用外界物理量对光纤中光的相位进行调制。
当外界物理量作用于光纤时,会导致光的相位发生变化,通过测量相位变化,可以实现对物理量的测量。
这类传感器具有较高的灵敏度和精度。
偏振调制型光纤传感器:偏振调制型光纤传感器主要利用外界物理量对光纤中光的偏振状态进行调制。
当外界物理量作用于光纤时,会导致光的偏振状态发生变化,通过测量偏振状态的变化,可以实现对物理量的测量。
五类光纤传感器基本原理和优点简介来源:与非网根据被调制的光波的性质参数不同,这两类光纤传感器都可再分为强度调制光纤传感器、相位调制光纤传感器、频率调制光纤传感器、偏振态调制光纤传感器和波长调制光纤传感器。
1)强度调制型光纤传感器基本原理是待测物理量引起光纤中传输光光强的变化,通过检测光强的变化实现对待测量的测量。
恒定光源发出的强度为I的光注入传感头,在传感头内,光在被测信号的作用下其强度发生了变化,即受到了外场的调制,使得输出光强的包络线与被测信号的形状一样,光电探测器测出的输出电流也作同样的调制,信号处理电路再检测出调制信号,就得到了被测信号。
这类传感器的优点是结构简单、成本低、容易实现,因此开发应用的比较早,现在已经成功的应用在位移、压力、表面粗糙度、加速度、间隙、力、液位、振动、辐射等的测量。
强度调制的方式很多,大致可分为反射式强度调制、透射式强度调制、光模式强度调制以及折射率和吸收系数强度调制等等。
一般反射式强度调制、透射式强度调制、折射率强度调制称为外调制式,光模式称为内调制式。
但是由于原理的限制,它易受光源波动和连接器损耗变化等的影响,因此这种传感器只能用于干扰源较小的场合。
2)相位调制型光纤传感器基本原理是:在被测能量场的作用下,光纤内的光波的相位发生变化,再用干涉测量技术将相位的变化转换成光强的变化,从而检测到待测的物理量。
相位调制型光纤传感器的优点是具有极高的灵敏度,动态测量范围大,同时响应速度也快,其缺点是对光源要求比较高同时对检测系统的精密度要求也比较高,因此成本相应较高。
目前主要的应用领域为:利用光弹效应的声、压力或振动传感器;利用磁致伸缩效应的电流、磁场传感器;利用电致伸缩的电场、电压传感器;利用赛格纳克效应的旋转角速度传感器(光纤陀螺)等。
3)频率调制型光纤传感器基本原理是利用运动物体反射或散射光的多普勒频移效应来检测其运动速度,即光频率与光接收器和光源间运动状态有关。