强度调制机理光纤传感器基本原理
- 格式:ppt
- 大小:545.00 KB
- 文档页数:7
光纤传感器的原理是光纤传感器是一种利用光学原理来进行物体检测和测量的设备。
它利用光纤中的光信号与外界物理量的相互作用,通过测量光的特性变化来获取物理量的信息。
光纤传感器具有高精度、快速响应、不受电磁干扰等优点,广泛应用于工业、生活、医疗等领域。
一、基本原理光纤传感器的基本原理是利用光的传输和载波调制技术。
通常,光纤传感器由光源、光纤、检测元件和信号处理模块组成。
光源产生光信号后,通过光纤传输至检测元件,光信号在物理量作用下发生变化,最后由信号处理模块将光信号转化为电信号输出。
二、工作原理光纤传感器的工作原理可以分为干涉型、散射型和吸收型。
1. 干涉型干涉型光纤传感器利用光的干涉现象来测量物理量。
它通过将光信号分为两个相干波束,一个作为参考光束,另一个经过检测元件后与参考光束发生干涉。
当外界物理量作用于光束时,光的相位和振幅会发生变化,通过测量干涉光信号的强度或相位差,获得物理量的信息。
2. 散射型散射型光纤传感器利用光在纤芯中的散射现象来测量物理量。
它通过纤芯中的光散射来判断外界物理量的变化。
光纤中的散射分为弹性散射和非弹性散射两种,其中弹性散射主要受到光纤材料的缺陷、晶格振动等因素影响,非弹性散射则由于外界物理量的作用引起光纤材料中电子的激发和产生。
通过测量散射光信号的强度、频谱等特性,可以获取物理量的信息。
3. 吸收型吸收型光纤传感器利用光在特定介质中的吸收现象来测量物理量。
它通过在光纤中引入吸收介质,当外界物理量作用于吸收介质时,吸收介质中的光吸收发生变化。
通过测量光的强度变化,可以获得物理量的信息。
三、应用领域光纤传感器在诸多领域有着广泛的应用。
1. 工业领域在工业自动化控制中,光纤传感器可用于测量温度、压力、液位、流量等物理量。
通过光纤传感器的应用,可以实现高精度、实时的物理量检测和测量,从而提高生产效率、保证产品质量。
2. 生活领域光纤传感器在生活中也有着广泛的应用,如煤气检测、火灾报警、安全防范等。
无损检测技术中的光纤传感器原理及应用光纤传感器是一种基于光纤材料制造的传感器,利用光的特性对物理量进行测量。
在无损检测技术中,光纤传感器具有很高的应用价值。
本文将介绍光纤传感器的原理,以及其在无损检测技术中的应用。
光纤传感器的原理主要基于光的传输和调制。
光纤传感器一般由光源、传输光纤和光检测器组成。
光源通过光纤传输光信号,经过光检测器获得信号后进行处理和分析,从而实现对被测物理量的测量。
光纤传感器根据其测量原理可以分为光强型传感器、干涉型传感器和光时延型传感器等。
光强型传感器是利用光信号强度的变化来判断被测量的物理量变化。
例如,在材料应力检测中,应用光纤传感器可以通过检测材料的变形程度来判断材料的应力情况。
当被测物体产生变形时,光纤传感器的光强度会发生变化,进而通过检测和分析光强度的变化来计算出应力值。
干涉型传感器基于光的干涉原理来实现物理量的测量。
例如,在温度检测中,通过利用光纤两路光波的干涉效应来测量温度变化。
被测温度变化会使光纤长度产生微小变化,进而导致干涉光波的相位差变化。
通过检测光波的相位差变化,可以计算出被测温度的值。
光时延型传感器则基于光信号传输的时间延迟来实现物理量的测量。
例如,在液位检测中,利用光信号在液体中传输速度较慢的特性,可以通过检测光信号在液体中的传输时间来计算出液体的高度。
光纤传感器在无损检测技术中有着广泛的应用。
一方面,光纤传感器能够实现对物理量的高精度测量,具有较高的灵敏度和准确性。
另一方面,光纤传感器具有体积小、不受电磁干扰、耐腐蚀等特点,使其在工业领域中的应用优势得到充分发挥。
在材料的无损检测中,光纤传感器可以应用于材料的应力、温度以及液位等参数的检测。
例如,在航空航天领域中,光纤传感器可以被嵌入到飞机结构中,实时监测应力分布与变化情况,从而保证飞行安全。
在化工行业,光纤传感器可以用于检测管道中液体的流速和液位,及时发现问题并进行处理。
此外,光纤传感器还可以应用于激光加工、生物医学等领域中,并取得了良好的效果。
强度调制型光纤传感器原理《光纤传感技术》强度调制传感机理υ特点:简单,经济,可靠υ缺点:精度低入射光波出射光波I 1t I s t 强度调制区I D tI o t 信号信号强度调制方式υ反射式υ透射式υ光模式耦合υ折射率υ光吸收系数1. 反射式强度调制原理υ非功能型υ原理d < a/2T → a >2dT , 耦合至输出光纤的功率=0d > (a+2r)/2T → a <2dT-2r, 耦合系数=(r/2dT )2;a/2T ≤ d≤ (a+2r)/2T, 由重叠部分的面积确定a R R=r+2dTrδad 可移动反射镜Out In T=tg (sin -1NA)=a/2d 源光纤的像2d 2012P r F P r dT δα⎛⎫⎛⎫==⋅ ⎪ ⎪⎝⎭⎝⎭1.1 反射式强度调制位移传感【例】已知:阶跃光纤F-d 曲线,2r =200μm ,NA =0.5,间距 a =100 μm, 则F 随d 变化速率0.005%/ μm问:系统分辨率10-7 ?(位移)A 20040050耦合效率/%反射位置600d=320μm 7.2%的效率Fd1.2 反射式光纤传感单元类型x x I TxI T 传光束型双光纤型单光纤型2. 透射式强度调制υ调制原理:遮光υ调制方法:芯径金属包层xD 入射光出射光发射光纤接收光纤-0.5D 0.51.00xI 0.5D -0.9D 0.9D 调制区域动纤式、遮光屏、吸收材料…2.1 透射强度调制类型υ光纤→光纤直接耦合:灵敏度低、动态范围小υ光纤→光纤透镜耦合:F 与反射式计算相同υ光栅遮光屏: 灵敏、简单、可靠dT d发射光纤接收光纤可移动遮光屏r δ发射光纤接收光纤透镜透镜移动光栅3. 光模式-受抑全内反射传感器υ传感头-多模光纤υ机理-芯模 包层模υ类型:υ透射式– 振动、位移υ缺点:需要精密机械调整和固定装置υ反射式υ无需精密调整装置υ应用:浓度、气/液二相流、温度等纤芯θ全内反射角位移x 固定光纤可动光纤入射光输出光3.1 光模式-微弯传感器υ传感头:多模光纤υ机理:芯模 包层模υ应用:压力、水声变形器光纤最小可测位移:0.01nm 动态范围:110dB4. 折射率υ光纤折射率变化型υ纤芯与包层折射率温度系数不同 测温υ主要应用:温度报警υ倏逝波耦合型υ边抛热敏光纤υMPDυ反射系数型—受抑全内反射型n2n3n15. 光吸收系数-辐射传感器υ光纤吸收特性υ辐射 吸收损耗增加,输出功率下降υ敏感源:x射线、γ射线、中子射线光纤υ特点:灵敏度高、线性范围大、有‘记忆’性(pp.58 图2-14)。
光纤传感器的基本原理
光纤传感器通过光导纤维把输入变量转换成调制的光信号。
光纤传感器的测量原理有两种。
(1) 物性型光纤传感器原理
物性型光纤传感器是利用光纤对环境变化的敏感性,将输入物理量变换为调制的光信号。
其工作原理基于光纤的光调制效应,即光纤在外界环境因素,如温度、压力、电场、磁场等等转变时,其传光特性,如相位与光强,会发生变化的现象。
因此,假如能测出通过光纤的光相位、光强变化,就可以知道被测物理量的变化。
这类传感器又被称为敏感元件型或功能型光纤传感器。
激光器的点光源光束集中为平行波,经分光器分为两路,一为基准光路,另一为测量光路。
外界参数(温度、压力、振动等)引起光纤长度的变化和相位的光相位变化,从而产生不同数量的干涉条纹,对它的模向移动进行计数,就可测量温度或压力等。
图1 物性型光纤传感器工作原理示意图
(2) 结构型光纤传感器原理
结构型光纤传感器是由光检测元件(敏感元件)与光纤传输回路及测量电路所组成的测量系统。
其中光纤仅作为光的传播媒质,所以又称为传光型或非功能型光纤传感器。
图2 结构型光纤传感器工作原理示意图
(3) 拾光型光纤传感器原理
用光纤作为探头,接收由被测对象辐射的光或被其反射、散射的光。
其典型例子如光纤激光多普勒速度计、辐射式光纤温度传感器等。
图3 拾光型光纤传感器工作原理示意图。
传感器之家
光纤传感器的调制原理
随着光纤和光通信技术的发展,光纤传感器也应运而生。
光纤传感器是以光纤为基础,感测外界物理量变化的一种传感技术。
由于光在传播过程中,由于温度、压力、电磁场等的影响下,其振幅、相位、波长等会发生变化,从而构成强度、波长等的调制,基于这一原理,制造出各种不同的光纤传感器。
下面简要说下这几种调制原理。
一、强度调制。
它是利用测试信号的变化来改变光纤中光的强度,然后通过解调来实现对被测量的测量。
影响光强变化的因素有:光纤的微弯状态、光纤的吸收特性和折射率等。
二、相位调制。
外界信号的变化,使光纤中的光波发生相位改变的调制,常见的相位调制有:功能型调制、萨格奈克调制和非功能型调制。
三、频率调制。
通过检测光波频率或波长的变化,来测量外界信号变化的调制技术,这种调制称为波长调制或频率调制。
频率调制多采用多普勒效应,多用于测量流体的速度。
四、偏振调制。
这里涉及光波的两个物理量:电场矢量和磁场矢量。
它们都是与光波的传播方向相垂直的。
根据这两个物理量的变化,光可以分为线偏振光、圆偏振光、椭圆偏振光、部分偏振光和完全偏振光。
根据这些类型,可以制成各种不同的偏振调制传感器,利用的效应有磁光效应、电光效应和光弹效应。
传感器之家。
强度光纤传感器的原理
强度光纤传感器是一种基于光纤的传感器,通过测量光信号的强度来感知环境物理量的变化。
传感器的工作原理如下:
1. 光源:传感器通过一根光纤将光源引入系统。
光源可以是激光器、LED等。
光线经由光纤传输到光纤的末端。
2. 光纤传感区域:光纤传感器的一段光纤被放置在需要测量的环境中,这段光纤称为传感区域。
环境物理量的变化会导致光纤传感区域光的特性发生变化。
3. 光信号传输:环境变化引起光纤传感区域光的特性发生变化,如光的强度、相位、波长等。
光信号通过光纤传回到光纤传感器中。
4. 光检测器:光信号到达光纤传感器后,会被光检测器接收。
光检测器可以是光电二极管(Photodiode)、光电倍增管(Photomultiplier Tube)等。
5. 信号处理:光检测器将接收到的光信号转换为电信号,并经过放大和滤波等处理。
然后,通过适当的电路进行信号处理和分析,得到与环境物理量变化相关的输出信号。
6. 输出:最终,输出的信号可以是电压、电流、数字信号等形式,用于监测和测量环境中的物理量变化。
总而言之,强度光纤传感器通过测量光信号的强度变化来感知环境物理量的变化,利用光纤作为传感元件,通过光信号的传输和检测,实现对环境变量的监测和测量。