【二轮精品】上海市17区县2013届高三一模(数学文科)分类汇编专题十七二项式定理
- 格式:doc
- 大小:40.00 KB
- 文档页数:1
2013年普通高等学校招生全国统一考试上海 数学试卷(文史类)本试卷共有23道题,满分150分,考试时间120分钟.一、填空题(本大题共有14题,满分56分)1.不等式021x x <-的解为 . 2.在等差数列{}n a 中,若123430a a a a +++=,则23a a += .3.设m ∈R ,()2221i m m m +-+-是纯虚数,其中i 是虚数单位,则m = . 4.若2011x =,111x y =,则x y += . 5.已知ABC ∆的内角A 、B 、C 所对的边分别是a ,b ,c .若2220a ab b c ++-=,则角C 的大小是 .6.某学校高一年级男生人数占该年级学生人数的40%.在一次考试中,男、女生平均分数分别为75、80,则这次考试该年级学生平均分数为 .7.设常数a ∈R .若52a x x ⎛⎫+ ⎪⎝⎭的二项展开式中7x 项的系数为-10,则a = . 8.方程91331x x +=-的实数解为 . 9.若1cos cos sin sin 3x y x y +=,则()cos 22x y -= . 10.已知圆柱Ω的母线长为l ,底面半径为r ,O 是上地面圆心,A 、B 是下底面圆周上两个不同的点,BC 是母线.若直线OA 与BC 所成角的大小为π6,则l r = . 11.盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是(结果用最简分数表示).12.设AB 是椭圆Γ的长轴,点C 在Γ上,且π4CBA ∠=.若4AB =,BC =Γ的两个焦点之间的距离为 . 13.设常数0a >,若291a x a x +≥+对一切正实数x 成立,则a 的取值范围为 . 14.已知正方形ABCD 的边长为1.记以A 为起点,其余顶点为终点的向量分别为1a 、2a 、3a ;以C 为起点,其余顶点为终点的向量分别为1c 、2c 、3c .若{},,,1,2,3i j k l ∈且,i j k l ≠≠,则()()i j k l a a c c +⋅+ 的最小值是 .二、选择题(本大题共有4题,满分20分)15.函数()()211f x x x =-≥的反函数为()1f x -,则()12f -的值是( )(A(B) (C)1(D)116.设常数a ∈R ,集合()(){}|10A x x x a =--≥,{}|1B x x a =≥-.若A B =R ,则a 的取值范围为( )(A )(),2-∞ (B )(],2-∞ (C )()2,+∞ (D )[)2,+∞ 17.钱大姐常说“好货不便宜”,她这句话的意思是:“好货”是“不便宜”的( )(A )充分条件(B )必要条件 (C )充分必要条件(D )既非充分又非必要条件 18.记椭圆221441x ny n +=+围成的区域(含边界)为()1,2,n n Ω= ,当点(),x y 分别在12,,ΩΩ 上时,x y +的最大值分别是12,,M M ,则lim n n M →∞=( ) (A )0 (B )14 (C )2 (D)三.解答题(本大题共有5题,满分74分)19.(本题满分12分)如图,正三棱锥O ABC -底面边长为2,高为1,求该三棱锥的体积及表面积.第19题图B20.(本题满分14分)本题共有2个小题.第1小题满分6分,第2小题满分8分.甲厂以x 千米/小时的速度匀速生产某种产品(生产条件要求110x ≤≤),每小时可获得的利润是3100(51)x x+-元. (1)求证:生产a 千克该产品所获得的利润为213100(5)a x x+-; (2)要使生产900千克该产品获得的利润最大,问:甲厂应该如何选取何种生产速度?并求此最大利润.21.(本题满分14分)本题共有2个小题.第1小题满分6分,第2小题满分8分.已知函数()2sin()f x x ω=,其中常数0ω>.(1)令1ω=,判断函数()()()2F x f x f x π=++的奇偶性并说明理由;(2)令2ω=,将函数()y f x =的图像向左平移6π个单位,再往上平移1个单位,得到函数()y g x =的图像.对任意的a R ∈,求()y g x =在区间[,10]a a π+上零点个数的所有可能值.已知函数()2||f x x =-.无穷数列{}n a 满足1(),*n n a f a n N +=∈.(1)若10a =,求2a ,3a ,4a ;(2)若10a >,且1a ,2a ,3a 成等比数列,求1a 的值;(3)是否存在1a ,使得1a ,2a ,3a ,…,n a …成等差数列?若存在,求出所有这样的1a ;若不存在,说明理由.如图,已知双曲线1C :2212x y -=,曲线2C :||||1y x =+.P 是平面内一点,若存在过点P 的直线与1C 、2C 都有公共点,则称P 为“1C -2C 型点”.(1)在正确证明1C 的左焦点是“1C -2C 型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);(2)设直线y kx =与2C 有公共点,求证||1k >,进而证明原点不是“1C -2C 型点;(3)求证:圆2212x y +=内的点都不是“1C -2C 型点”.。
专题十五 复数汇编2013年3月(闵行区2013届高三一模 文科)1.已知复数z 满足(1)4i z i +=(i 为虚数单位),则z =_________________. 1.22i +;(静安区2013届高三一模 文科)14.(文)设复数i a a z )sin 2()cos (θθ-++=(i 为虚数单位),若对任意实数θ,2≤z ,则实数a 的取值范围为 .14.((文)]55,55[-. (嘉定区2013届高三一模 文科)1.若i iiz +=11(i 为虚数单位),则=z ___________.1.i -2(静安区2013届高三一模 文科)15.(文)若复数021≠z z ,则2121z z z z =是12z z =成立的( )(A) 充要条件 (B) 既不充分又不必要条件 (C) 充分不必要条件 (D) 必要不充分条件 15.(文)D ; (黄浦区2013届高三一模 文科)16.已知1z =且z ∈C ,则|22i |z --(i 为虚数单位)的最小值是 ( )A .22B .2C .122+D . 122-16.D(浦东新区2013届高三一模 文科)9.已知实数,x y 满足约束条件203501x y x y y -≤⎧⎪-+≥⎨⎪≥⎩,则z x y =+的最小值等于 1- .(青浦区2013届高三一模)17.已知复数i z 210+=在复平面上对应点为0P ,则0P 关于直线zi z l =--22:的对称点的复数表示是……………………………………………………………………………( .B ).A .i - .B iC .i -1D .i +1(杨浦区2013届高三一模 文科)2.若复数iiz -=1 (i 为虚数单位) ,则=z . 2.2;(崇明县2013届高三一模)16、下面是关于复数21z i=-+的四个命题: ①2z =; ②22z i =; ③z 的共轭复数为1i +; ④z 的虚部为1-.其中正确的命题……………………………………………………………………………( )A .②③B .①②C .②④D .③④16、C(金山区2013届高三一模)6.若复数(1+2i)(1+a i)是纯虚数,(i 为虚数单位),则实数a 的值是 .6.21(崇明县2013届高三一模)1、设复数(2)117z i i -=+(i 为虚数单位),则z =.1、3+5i(宝山区2013届期末)1.在复数范围内,方程210x x ++=的根是 .12-(宝山区2013届期末)4.已知复数(2)x yi -+(,x y R ∈)的模为,则yx的最大值是 . 3(长宁区2013届高三一模)6. (文)已知z 为复数,且(2)1i z i +=,则z= (文)i 3-(嘉定区2013届高三一模 文科)19.(本题满分12分)设复数i a z ⋅++-=)cos 1(2)sin 4(22θθ,其中R ∈a ,),0(πθ∈,i 为虚数单位.若A B 1BCz 是方程0222=+-x x 的一个根,且z 在复平面内对应的点在第一象限,求θ与a 的值.19.(本题满分12分)方程0222=+-x x 的根为i x ±=1.………………(3分)因为z 在复平面内对应的点在第一象限,所以i z +=1,………………(5分)所以⎩⎨⎧=+=-1)cos 1(21sin 422θθa ,解得21cos -=θ,因为),0(πθ∈,所以32πθ=,……(8分)所以43sin 2=θ,所以4sin 4122=+=θa ,故2±=a .…………(11分)所以3πθ2=,2±=a .…………(12分)(浦东新区2013届高三一模 文科)19.(本小题满分12分,第1小题满分6分,第2小题满分6分)如图,直三棱柱111ABC A B C -中,12AB AC AA ===,45ABC ︒∠=. (1)求直三棱柱111ABC A B C -的体积;(2)若D 是AC 的中点,求异面直线BD 与1AC 所成的角.解:(1)122242V =⋅⋅⋅=;…………………………………6分(2)设M 是1AA 的中点,连结,DM BM ,1//DM AC ∴,BDM ∴∠是异面直线BD 与1AC所成的角.………8分在BDM ∆中,BD BM MD ===,cos BDM ∠==.…………………………………10分即BDM ∠=.∴异面直线BD 与1AC 所成的角为.…………12分(浦东新区2013届高三一模 文科)20.(本小题满分14分,第1小题满分6分,第2小题满分8分)已知复数[]122sin ,1(2cos ),0,z z i θθθπ==+∈. (1)若12z z R ⋅∈,求角θ;(2)复数12,z z 对应的向量分别是12,OZ OZ ,其中O 为坐标原点,求12OZ OZ ⋅的取值范围. 解:(1)[]i i z z )cos 2(1)3sin 2(21θθ+-=⋅=R i ∈-++)32sin 2()cos 32sin 2(θθθ……2分 232sin =∴θ…………………………4分 又 πθ220≤≤ ,ππθ3232或=∴, 36ππθ或=∴…………………6分 (2))cos 2,1OZ 3sin 2(OZ 21θθ(),,=-= θθcos 32sin 2OZ OZ 21-=⋅ )3sin(4πθ-=………………………10分3233ππθπ≤-≤-,4)3sin(432≤-≤-∴πθ[]4,32OZ OZ 21-∈⋅∴………14分(松江区2013届高三一模 文科)20.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分已知z C ∈,且满足2()52z z z i i ++=+. (1)求z ;(2)若m R ∈,w zi m =+,求证:1w ≥.20.解:(1)设(,)z a bi a b R =+∈,则222z a b =+,()2z z i ai += ………… 2分 由22252a b ai i ++=+得22522a b a ⎧+=⎨=⎩ ……………………………4分 解得12a b =⎧⎨=⎩或12a b =⎧⎨=-⎩……………………………… 5分 ∴12z i =+或12z i =-……………………………… 7分(2)当12z i =+时,(12)2w zi m i i m i m =+=++=-++=1≥…………………… 10分当12z i =-时,(12)2w zi m i i m i m =+=-+=++=1≥……………………… 13分………………………………14分∴w1。
专题三 空间几何汇编2013年3月(松江区2013届高三一模 文科)15.过点(1,0)且与直线220x y --=平行的直线方程是 A .210x y +-= B .210x y -+= C .220x y +-= D .210x y --= 15.D(嘉定区2013届高三一模 文科)16.以下说法错误的是……………………………( ) A .直角坐标平面内直线的倾斜角的取值范围是),0[πB .直角坐标平面内两条直线夹角的取值范围是⎥⎦⎤⎢⎣⎡2,0π C .平面内两个非零向量的夹角的取值范围是),0[πD .空间两条直线所成角的取值范围是⎥⎦⎤⎢⎣⎡2,0π 16.C(浦东新区2013届高三一模 文科)10.若一个圆锥的轴截面是边长为4cm 的等边三角形,则这个圆锥的侧面积为 8π 2cm .(黄浦区2013届高三一模 文科)15.在四边形ABCD 中,AB DC =,且AC ·BD =0,则四边形ABCD 是 ( )A .菱形B .矩形C .直角梯形D .等腰梯形15.A(虹口区2013届高三一模)16、已知1l 、2l 、3l 是空间三条不同的直线,下列命题中正确的是( ).A 如果21l l ⊥ ,32//l l .则31l l ⊥. .B 如果21//l l ,32//l l .则1l 、2l 、3l 共面. .C 如果21l l ⊥ ,32l l ⊥.则31l l ⊥. .D 如果1l 、2l 、3l 共点.则1l 、2l 、3l 共面. 16、A ;(青浦区2013届高三一模)6.若圆柱的侧面展开图是一个正方形,则它的母线长和底面半径的比值是 π2 .(奉贤区2013届高三一模)13、(理)在平面直角坐标系xOy 中,对于任意两点111()P x y ,与222()P x y ,的“非常距离”给出如下定义:若1212||||x x y y --≥,则点1P 与点2P 的“非常距离”为12||x x -, 若1212||||x x y y -<-,则点1P 与点2P 的“非常距离”为12||y y -.已知C 是直线334y x =+上的一个动点,点D 的坐标是(0,1),则点C 与点D 的“非常距离”的最小值是_________.13. 理78(杨浦区2013届高三一模 文科)7. 若圆椎的母线cm 10=l ,母线与旋转轴的夹角030=α,则该圆椎的侧面积为2cm . 7. π50(普陀区2013届高三一模 文科)4. 【文科】正方体1111D C B A ABCD -中,异面直线C B 1与D C 1所成的角的大小为 .4.【文科】60(嘉定区2013届高三一模 文科)8.一个圆锥的侧面展开图是一个半径为R 的半圆,则这个圆锥的底面积是________. 8.42R π(浦东新区2013届高三一模 文科)12.如图所示,已知一个空间几何体的三视图,则该几何体的体积为23π+ .(金山区2013届高三一模)9.若直线l :y=kx 经过点)32cos ,32(sin ππP ,则直线l 的倾斜角为α = . 9.56π(青浦区2013届高三一模)13.正六边形111111F E D C B A 的边长为1,它的6条对角线又围成了一个正六边形222222F E D C B A ,如此继续下去,则所有这些六边形的面积和是439 .俯视图左视图主视图A BCD 1A 1B 1C 1D (第4题图)杨浦区2013届高三一模 文科)5.若直线l :012=--x y ,则该直线l 的倾斜角是 . 5.2arctan ;((青浦区2013届高三一模)5.已知:正三棱柱的底面正三角形边长为2,侧棱长为3,则它的体积=V 33 .(虹口区2013届高三一模)10、在A B C ∆中,32=AB ,2=AC 且︒=∠30B ,则A B C ∆的面积等于 . 10、32或3;(普陀区2013届高三一模 文科)13. 三棱锥S ABC -中,E 、F 、G 、H 分别为SA 、AC 、BC 、SB 的中点,则截面EFGH将三棱锥S ABC -分成两部分的体积之比为 . 13.1:1(松江区2013届高三一模 文科)13.在平面直角坐标系中,定义1212(,)d P Q x x y y =-+-为11(,)P x y ,22(,)Q x y 两点之间的“折线距离”.则原点)0,0(O 与直线05=-+y x 上一点),(y x P 的“折线距离”的最小值是 ▲ .13. (杨浦区2013届高三一模 文科)12.如图,已知边长为8米的正方形钢板有一个角锈蚀,其中4AE =米,6CD =米. 为了合理利用这块钢板,将在五边 形ABCDE 内截取一个矩形块BNPM ,使点P 在边DE 上. 则矩形BNPM 面积的最大值为____ 平方米 . 12. 48;(崇明县2013届高三一模)3、过点(1,1)P -,且与直线:10l x y -+=垂直的直线方程是 . 3、+=0x y(长宁区2013届高三一模)17、已知m ,n 是两条不同直线,βα,是两个不同平面,下列(第13题图) SB AC EHG FA MEPDCBNF命题中的假命题的是( )A.βαβα//,,则若⊥⊥m mB.αα⊥⊥n m n m 则若,,//C.n m n m //,,//则若=βααD.βαβα⊥⊂⊥则若,,m m17、C(闵行区2013届高三一模 文科)12. (文)已知△ABC 的面积为1,在△ABC 所在的平面内有两点P Q 、,满足0,PA PC QA QB QC BC +=++=,则△APQ 的面积为 .12.文13; (宝山区2013届期末)12.已知半径为R 的球的球面上有三个点,其中任意两点间的球面距离都等于3Rπ,且经过这三个点的小圆周长为4π,则R= .(青浦区2013届高三一模)11.已知01c os s i n 2=-+θθa a 与01cos sin 2=-+θθb b (b a ≠).直线MN 过点),(2a a M 与点),(2b b N ,则坐标原点到直线MN 的距离是 1 .(长宁区2013届高三一模)11、(理)我们知道,在平面中,如果一个凸多边形有内切圆,那么凸多边形的面积S 、周长c 与内切圆半径r 之间的关系为cr S 21=。
2013届高三模拟数学(文)试题一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1. 已知{}21|log ,1,|,2U y y x x P y y x x ⎧⎫==>==>⎨⎬⎩⎭,则U C P =___________. 2.已知⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫⎝⎛-15231321X ,则二阶矩阵X =__________. 3.已知复数(2)x yi -+(,x y R ∈)则yx的最大值是__________. 4.不等式37922x -≤的解集是__________. 5.执行右边的程序框图,若0.95p =,则输出的n =__________.6. 等差数列{}n a 前n 项和为n S ,已知2110m m m a a a +-+-=2138m S -=则m =________. 7. 若直线y =x +b与曲线3y =b 的取值范围是___________. 8. 设等比数列{}n a 的前n 项和为n S ,则“10a >”是“32S S >”的 (条件) 9. 已知函数)0(cos sin 3)(>+=ωωωx x x f ,)(x f y =的图像与直线2=y 的两个相邻交点的距离等于π,则)(x f 的单调递增区间是___________.10. 已知向量a 、b 满足(2)()6a b a b ++-=-,且||1a =,||2b =,则a 与b 的夹角为____.11. 已知矩形ABCD 的顶点都在半径为4的球O的球面上,且6,AB BC ==,则棱锥O ABCD -的体积为___________.12. 在ABC 中,AD AB ⊥,3BC BD =,1AD =,则AC AD =___________.13.在平面直角坐标系xOy 上的区域D由不等式组02x y x ⎧≤≤⎪≤⎨⎪≤⎩给定.若(,)M x y 为D 上的动点,点A的坐标为,则z OM OA =uuu r uu rg 的最大值为___________.14.(文)高三(1)班班委会由3名男生和2名女生组成,现从中任选2人参加上海世博会的志愿者工作,则选出的人中至少有一名女生的概率是 .二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案.考生必须在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15. 若a ,b 是非零向量,“a ⊥b ”是“函数()()()f x xa b xb a =+⋅-为一次函数”的(A )充分而不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 16.若无穷等比数列{}n a 的前n 项和为n S ,首项为1,公比为23-a ,且a S n n =∞→lim ,()n N *∈,则复数ia z +=1在复平面上对应的点位于( )A B ; C D . 18.已知数列{}n a 是各项均为正数且公比不等于1的等比数列(n ∈*N ). 对于函数()y f x =,若数列{}ln ()n f a 为等差数列,则称函数()f x 为“保比差数列函数”. 现有定义在(0,)+∞上的如下函数:①1()f x x=; ②2()f x x =; ③()e x f x =; ④()f x =则为“保比差数列函数”的所有序号为( )A .①②;B .③④;C .①②④;D .②③④ .三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)本题共有2个小题,第1小题满分4分,第2小题满分8分.已知()2cos ,1m x x =+,()cos ,n x y =-,满足0m n ⋅=. (1)将y 表示为x 的函数()f x ,并求()f x 的最小正周期; (2)当]3,0[π∈x 时,a x f >)(恒成立,求实数a 的取值范围.20.(本题满分14分)本题共有2个小题,第(1)小题满分8分,第(2)小题满分6分.如图,△ABC 中,=90ACB ∠,=30ABC ∠,BC O 在边BC 上,半圆与AC 、AB 分别相切于点C 、M ,与BC 交于点N ),将△ABC 绕直线BC 旋转一周得到一个旋转体。
2013届高中毕业班第一次模拟考文科数学答案13. 15 14. {|34}x x x >≠且 15. 250x y -+= 16. 135三. 解答题(共90分)17. 解:由已知得213112203a q a q a q ⎧=⎪⎨+=⎪⎩L L L L ①②………………..4分 ①②得23110q q =+化简得:231030q q -+=…………..5分 133q q ∴==或 (6)分当13q =时,118a =;当3q =时,129a =……………….8分{}n a ∴的通项公式1118()3n n a -=g 或1239n n a -=g ………….10分18. 解:(1)由sin sin A B C +=及正弦定理,得a b c +=,又1a b c ++=……………………….2分 1c + 1c ∴=……………………………6分(2)由1sin 2S ab C =又1sin 6S C = 11sin sin 26ab C C ∴= 13ab ∴=,又a b +=..8分由22222()21cos 222a b c a b ab c C ab ab +-+--===…………11分 60C ∴=o ………………………………………………………12分19. 解:(1)从50名教师随机选出2名的方法数为2501225C =…….2分 选出的2人都来自柳州市的方法数为215105C =……………..4分故2人都来自柳州市的概率为1053122535P ==…………….6分 (2)选出2人来自同一城市的方法数为22222015510350C C C C +++=…….8分 所以选出2人来自不同城市的方法数为250350875C -=……………10分故 2人来自不同城市的概率为875512257P ==………………………..12分20. 解.(1)证明:因为侧面11ABB A ,11ACC A 均为正方形,所以11,AA AC AA AB ⊥⊥,所以1AA ⊥平面ABC ,三棱柱111ABC A B C -是直三棱柱.因为1A D ⊂平面11A B C ,所以11CC A D ⊥, ………………………3分又因为1111A B AC =,D 为11B C 中点, 所以111A D B C ⊥. ……………………5分 因为1111CC B C C = ,所以1A D ⊥平面11BB C C . ……………6分(2)解: 因为侧面11ABB A ,11ACC A 均为正方形, 90BAC ∠= ,所以1,,AB AC AA 两两互相垂直,如图所示建立直角坐标系A xyz -……7分设1AB =,则111(0,10),(1,0,0),(0,0,1),(,,1)22C B AD ,. 1111(,,0),(0,11)22A D AC ==-uuu r uuu r ,, ……………………………8分 设平面1A DC 的法向量为=()x,y,zn ,则有 1100A D A C ⋅=⎧⎨⋅=⎩rrn n ,0x y y z +=⎧⎨-=⎩, x y z =-=-, 取1x =,得(1,1,1)=--n . ……………………9分又因为ABAB⋅==uu u rruu u rrnn,AB⊥平面11ACC A,…………11分所以平面11ACC A的法向量为(1,00)AB=uu u r,,因为二面角1D AC A--是钝角.所以,二面角1D AC A--的余弦值为……………12分21.解:(1)当2a=时,'2()61f x x=-…………………………….1分令'()0f x<,得x<<;…………………………3分令'()0f x>,得x<或x>……………………….5分∴()f x的单调递减区间是(,单调递增区间是(,-∞和()6+∞………………………………………………………6分(2)设过原点所作的切线的切点坐标是2(,)A m am m-,则231k am=-切线方程为32()(31)()y am m am x m--=--,……………….8分把(0,0)代入切线方程,得32()(31)()am m am m--=--m∴=或220am=a≠Q0m∴=………………………………………………11分即只有唯一切点,故过原点作切线只有一条………………….12分22. 解.(1)由已知可得点A(-6,0),F(0,4)设点P(x,y),则APuu u r=(x+6, y),FPuur=(x-4, y),由已知可得22213620(6)(4)0x yx x y⎧+=⎪⎨⎪+-+=⎩…………………………….4分则22x+9x-18=0,x=23或x=-6. 由于y>0,只能x=23,于是y=235.∴点P 的坐标是(23,235)……………………………………..6分(2) 直线AP 的方程是x -3y +6=0. 设点M(m ,0),则M 到直线AP 的距离是26+m . 于是26+m =6-m ,又-6≤m ≤6,解得m =2……………………………………………………8分 椭圆上的点(x ,y )到点M 的距离d 有222222549(2)4420()15992d x y x x x x =-+=-++-=-+,……….10分 由于-6≤X ≤6, ∴当x =29时,d 取得最小值15 ……………….12分。
第1页,共13页………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前2013年普通高等学校招生全国统一考试(上海卷)数学(文科)副标题考试范围:xxx ;考试时间:100分钟;命题人:xxx题号 一 二 三 总分 得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I 卷(选择题)一、单选题(本大题共4小题,共20.0分。
在每小题列出的选项中,选出符合题目的一项)1. 函数f(x)= x 2−1(x ≥0)的反函数为f −1(x),则f −1(2)的值是( ) A.B.C.D.2. 设常数a ∈R ,集合A ={x|(x −1)(x −a)≥0},B ={x|x ≥a −1},若A ∪B =R ,则a 的取值范围为( )A. ( −∞,2)B. ( −∞,2]C. ( 2,+∞ )D. [2,+∞ )3. 钱大姐常说“好货不便宜”,她这句话的意思是“好货”是“不便宜”的( ) A. 充分条件 B. 必要条件C. 充分必要条件D. 既非充分又非必要条件4. 记椭圆=1围成的区域(含边界)为Ωn (n =1,2,…),当点(x ,y)分别在Ω 1,Ω 2,…上时,x + y 的最大值分别是M 1,M 2,…,则=( ) A. 0 B. ‘ C. 2 D.第II 卷(非选择题)第2页,共13页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………二、填空题(本大题共14小题,共56.0分)5. 不等式<0的解为______.6. 在等差数列{a n }中,若a 1+ a 2+ a 3+ a 4=30,则a 2+ a 3=______.7. 设m R ,m 2+ m −2+(m 2−1)i 是纯虚数,其中i 是虚数单位,则m =______. 8. 已知=0,=1,则y =______.9. 已知△ ABC 的内角A 、B 、C 所对的边分别是a 、b 、c.若a 2+ ab + b 2− c 2=0,则角C 的大小是______.10. 某学校高一年级男生人数占该年级学生人数的40%.在一次考试中,男、女生平均分数分别为75、80,则这次考试该年级学生平均分数为______.11. 设常数a R.若的二项展开式中x 7项的系数为−10,则a =______.12. 方程=3 x 的实数解为______.13. 若cos x cos y +sin x sin y =,则cos(2x −2 y)=______.14. 已知圆柱Ω的母线长为l ,底面半径为r ,O 是上底面圆心,A 、B 是下底面圆周上两个不同的点,BC 是母线,如图.若直线OA 与BC 所成角的大小为,则=______.15. 盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是______(结果用最简分数表示).16. 设AB 是椭圆Γ的长轴,点C 在Γ上,且∠ CBA =.若AB =4,BC =,则Γ的两个焦点之间的距离为______.17. 设常数a >0.若9 x +≥ a +1对一切正实数x 成立,则a 的取值范围为______.第3页,共13页………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………○…………内…………○…………装…………○…………订…………○…………线…………○…………18. 已知正方形ABCD 的边长为1.记以A 为起点,其余顶点为终点的向量分别为a 1、a 2、a 3;以C 为起点,其余顶点为终点的向量分别为c 1、c 2、c 3.若i ,j ,k ,l {1,2,3}且i ≠ j ,k ≠ l ,则(a i + a j )·( c k + c l )的最小值是______.三、解答题(本大题共5小题,共74.0分。
2013年全国普通高等学校招生统一考试上海数学试卷(文科)解答一、填空题(本大题共有14题,满分56分)每个空格填对得4分,否则一律得零分.1.不等式021xx <-的解为 .2.在等差数列{}n a 中,若123430a a a a +++=,则23a a += .3.设m ∈R ,()2221i m m m +-+-是纯虚数,其中i 是虚数单位,则m = .4.若2011x =,111x y=,则=y .5.已知ABC ∆的内角A 、B 、C 所对的边分别是a ,b ,c .若2220a ab b c ++-=,则角C 的大小是 (结果用反三角函数值表示).6.某学校高一年级男生人数占该年级学生人数的40%.在一次考试中,男、女生平均分数分别为75、80,则这次考试该年级学生平均分数为 .7.设常数a ∈R .若52a x x ⎛⎫+⎪⎝⎭的二项展开式中7x 项的系数为-10,则a = .8.方程91331x x+=-的实数解为 .9.若1cos cos sin sin 3x y x y +=,则()cos 22x y -= .10.已知圆柱Ω的母线长为l ,底面半径为r ,O 是上地面圆心,A 、B 是下底面圆周 上两个不同的点,BC 是母线,如图.若直线OA 与BC 所成角的大小为π6,则=rl .11.盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是 (结果用最简分数表示).12.设AB 是椭圆Γ的长轴,点C 在Γ上,且π4CBA ∠=.若4AB =,2BC =,则Γ的两个焦点之间的距离为 .13.设常数0a >,若291a x a x+≥+对一切正实数x 成立,则a 的取值范围为 .14.已知正方形ABCD 的边长为1.记以A 为起点,其余顶点为终点的向量分别为1a 、2a 、3a;以C 为起点,其余顶点为终点的向量分别为1c 、2c 、3c.若{},,,1,2,3i jkl ∈且,i j k l ≠≠,则()()i j k l a a c c +⋅+的最小值是 .二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,选对得5分,否则一律得零分. 15.函数()()211f x x x =-≥的反函数为()1fx -,则()12f -的值是( )(A )3(B )3-(C )12+(D )12-16.设常数a ∈R ,集合()(){}|10A x x x a =--≥,{}|1B x x a =≥-.若A B =R ,则a 的取值范围为( ) (A )(),2-∞(B )(],2-∞(C )()2,+∞ (D )[)2,+∞17.钱大姐常说“好货不便宜”,她这句话的意思是:“好货”是“不便宜”的( ) (A )充分条件 (B )必要条件 (C )充分必要条件 (D )既非充分又非必要条件,18.记椭圆221441x ny n +=+围成的区域(含边界)为()1,2,n n Ω= ,当点(),x y 分别在12,,ΩΩ 上时,x y +的最大值分别是12,,M M ,则lim n n M →∞=( )(A )0 (B )41(C )2 (D )22第19题图三.解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域写出必要的步骤. 19.(本题满分12分)如图,正三棱锥O ABC -底面边长为2,高为1,求 该三棱锥的体积及表面积.33=V ,33=表S20.(本题满分14分)本题共有2个小题.第1小题满分6分,第2小题满分8分.甲厂以x 千米/小时的速度匀速生产某种产品(生产条件要求110x ≤≤),每小时可获得的利润是3100(51)x x+-元.(1)求证:生产a 千克该产品所获得的利润为213100(5)a x x+-;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该如何选取何种生产速度?并求此最大利润.(1)生产a 千克需要x a 小时,所获得的利润为:)315(100)315(1002x x a x a x x -+=⋅-+ (2)设利润为y 元,则4290031161100(51)910[3()]612y x x x x =⋅+-=⨯--+故6x =时,max 457500y =元. 21.(本题满分14分)本题共有2个小题.第1小题满分6分,第2小题满分8分.已知函数()2sin()f x x ω=,其中常数0ω>. (1)令1ω=,判断函数()()()2F x f x f x π=++的奇偶性并说明理由;(2)令2ω=,将函数()y f x =的图像向左平移6π个单位,再往上平移1个单位,得到函数()y g x =的图像.对任意的a R ∈,求()y g x =在区间[,10]a a π+上零点个数的所有可能值.(1))4sin(22cos 2sin 2)2sin(2sin 2)(ππ+=+=++=x x x x x x F ,22)4(=πF ,0)4(=-πF ,故)(x F 非奇非偶函数; (2)()2sin(2)f x x =,()2sin(2())12sin(2)163g x x x ππ=++=++()y g x =在区间[,10]a a π+上其长度为10个周期上,故:a 不是零点或a 是零点时,零点个数分别可以取20,21个。
专题九应用题汇编2013年3月(静安区2013届高三一模文科)(文)某地区的绿化面积每年平均比上一年增长10.4%,经过x年,绿化面积与原绿化面积之比为y,则y=f(x)的图像大致为()15.(文)D;(闸北区2013届高三一模文科)6.一人在海面某处测得某山顶C的仰角为α)450(<<α,在海面上向山顶的方向行进m米后,测得山顶C的仰角为α-90,则该山的高度为米.(结果化简) 6.α2tan21m;(普陀区2013届高三一模文科)18.如图,四边形ABCD是正方形,延长CD至E,使得CDDE=.若动点P从点A出发,沿正方形的边按逆时针方向运动一周回到A点,其中AP AB AEλμ=+,下列判断正确..的是………………………………………………………………………………()(A)满足λμ+2=的点P必为BC的中点.(B)满足1λμ+=的点P有且只有一个.(C)λμ+的最大值为3.(D)λμ+的最小值不存在.18.C(浦东新区2013届高三一模文科)21.(本小题满分14分,第1小题满分6分,第2小题满分8分)世博中学为了落实上海市教委推出的“阳光运动一小时”活动,计划在一块直角三角形BP(第18题图)ACDEABC 的空地上修建一个占地面积为S 的矩形AMPN 健身场地,如图点M 在AC 上,点N在AB 上,且P 点在斜边BC 上,已知 60=∠ACB 且30||=AC 米,=AM x ,]20,10[∈x .(1)试用x 表示S ,并求S 的取值范围; (2)设矩形AMPN 健身场地每平方米的造价为Sk37,再把矩形AMPN 以外(阴影部分)铺上草坪,每平方米的造价为Sk12(k 为正常数),求总造价T 关于S 的函数)(S f T =;试问如何选取||AM 的长使总造价T 最低(不要求求出最低造价).解:(1)在PMC Rt ∆中,显然x MC -=30||,60=∠PCM ,∴)30(3tan ||||x PCM MC PM -=∠⋅=,………………2分矩形AMPN 的面积)30(3||||x x MC PM S -=⋅=,[10,20]x ∈…4分于是32253200≤≤S 为所求.…………………6分(2) 矩形AMPN 健身场地造价=1T S k 37 ………………………………………7分又ABC ∆的面积为3450,即草坪造价=2T )3450(12S Sk-,……………8分 由总造价21T T T +=,∴)3216(25SS k T +=,32253200≤≤S .…10分36123216≥+SS ,……………………………………………………11分 当且仅当SS 3216=即3216=S 时等号成立,……………………………12分此时3216)30(3=-x x ,解得12=x 或18=x ,所以选取||AM 的长为12米或18米时总造价T 最低.………………………14分NNPMDCBANPM D CB A(黄浦区2013届高三一模 文科)21.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分.如图所示,ABCD 是一个矩形花坛,其中AB = 6米,AD = 4米.现将矩形花坛ABCD 扩建成一个更大的矩形花园AMPN ,要求:B 在AM 上,D 在AN 上,对角线MN 过C 点, 且矩形AMPN 的面积小于150平方米.(1)设AN 长为x 米,矩形AMPN 的面积为S 平方米,试用解析式将S 表示成x 的函数,并写出该函数的定义域;(2)当AN 的长度是多少时,矩形AMPN 的面积最小?并求最小面积.21.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分. 解:(1)由△NDC ∽△NAM ,可得DN DCNA AM=, ∴46x x AM -=,即64x AM x =-,……………………3分 故264x S AN AM x =⋅=-, ………………………5分 由261504x S x =<-且4x >,可得2251000x x -+<,解得520x <<,故所求函数的解析式为264x S x =-,定义域为(5,20). …………………………………8分(2)令4x t -=,则由(5,20)x ∈,可得(1,16)t ∈,故2266(4)166(8)x t S t t t +===++ …………………………10分8)96≥=, …………………………12分当且仅当16t t=,即4t =时96S =.又4(1,16)∈,故当4t =时,S 取最小值96.故当AN 的长为8时,矩形AMPN 的面积最小,最小面积为96(平方米)…………14分(长宁区2013届高三一模)21、(本题满分14分)(理)经过统计分析,公路上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数,当公路上的车流密度达到200辆/千米时,造成堵塞,此时车速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20200x ≤≤时,车流速度v 是车流密度x 的一次函数. (1)当0200x ≤≤时,求函数()v x 的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过公路上某观测点的车辆数,单位:辆/小时)()()f x x v x =可以达到最大,并求出最大值.(精确到1辆/小时)(文)某工厂生产一种产品的原材料费为每件40元,若用x 表示该厂生产这种产品的总件数,则电力与机器保养等费用为每件0.05x 元,又该厂职工工资固定支出12500元。
专题一 函数2013年2月(松江区2013届高三一模 理科)18.设()f x 是定义在R 上的偶函数,对任意x R ∈,都有(2)(2),f x f x -=+且当[2,0]x ∈-时,1()()12x f x =-.若在区间(2,6]-内关于x 的方程()log (2)0(1)a f x x a -+=>恰有3个不同的实数根,则实数a 的取值范围是A .(1,2)B .(2,)+∞C .D .2)18.D(浦东新区2013届高三一模 理科)16.已知函数241)(+=x x f ,若函数1()4y f x m =+-为奇函数,则实数m 为 ( C ) ()A 12-()B 0 ()C 12()D 1 (黄浦区2013届高三一模 理科)17.若()f x 是R 上的奇函数,且()f x 在[0,)+∞上单调递增,则下列结论:①|()|y f x =是 偶函数;②对任意的R x ∈都有()|()|0f x f x -+=;③()y f x =-在(,0]-∞上单调递增; ④()()y f x f x =-在(,0]-∞上单调递增.其中正确结论的个数为 A .1 B .2 C .3 D .4 17.B(青浦区2013届高三一模)18.已知函数)(x f 是定义在R 上的单调增函数且为奇函数,数列{}n a 是等差数列,01007>a ,则)()()()()(20132012321a f a f a f a f a f +++++ 的值………………………………( A ).A .恒为正数.B 恒为负数 C .恒为0 D .可正可负(浦东新区2013届高三一模 理科)18.定义域为[],a b 的函数()y f x =图象的两个端点为,A B ,向量(1)ON OA OB λλ=+-,(,)M x y 是()f x 图象上任意一点,其中[](1),0,1x a b λλλ=+-∈. 若不等式MN k ≤恒成立,则称函数()f x 在[],a b 上满足“k范围线性近似”,其中最小的正实数k 称为该函数的线性近似阀值.下列定义在[]1,2上函数中,线性近似阀值最小的是 ( D )()A 2y x = ()B 2y x =()C sin 3y x π= ()D 1y x x=- (松江区2013届高三一模 理科)11.给出四个函数:①xx x f 1)(+=,②xx x g -+=33)(,③3)(x x u =,④x x v sin )(=,其中满足条件:对任意实数x 及任意正数m ,都有()()0f x f x -+=及()()f x m f x +>的函数为 ▲ .(写出所有满足条件的函数的序号)11.③(松江区2013届高三一模 理科)15.过点(1,0)且与直线220x y --=平行的直线方程是 A .210x y +-= B .210x y -+= C .220x y +-= D .210x y --= 15.D(杨浦区2013届高三一模 理科)9. 下列函数:① xx f 3)(=, ②3)(x x f =, ③x x f 1ln)(= , ④2cos )(xx f π= ⑤1)(2+-=x x f 中,既是偶函数,又是在区间()∞+,0上单调递减函数为 (写出符合要求的所有函数的序号). 9.③⑤;((虹口区2013届高三一模)17、定义域为R 的函数c x b ax x f ++=2)()0(≠a 有四 个单调区间,则实数c b a ,,满足( ).A 0042>>-a ac b 且 .B 042>-ac b .C 02>-a b .D 02<-ab17、C ;(奉贤区2013届高三一模)18、定义域是一切实数的函数()x f y =,其图像是连续不断的,且存在常数λ(R λ∈)使得()()0f x f x λλ++=对任意实数x 都成立,则称()f x 是一个“λ—伴随函数”. 有下列关于“λ—伴随函数”的结论:①()0f x =是常数函数中唯一一个“λ—伴随函数”; ②“12—伴随函数”至少有一个零点.;③2()f x x =是一个“λ—伴随函数”;其中正确结论的个数是 ( )A .B .2个;C .3个;D .0个; 18(奉贤区2013届高三一模)16、已知函数sin (0)y ax b a =+>的图像如左图所示,则函数log ()a y x b =+的图像可能是( )A .B .C .D .16.(虹口区2013届高三一模)11、已知正实数x 、y 满足xy y x =+2,则y x +2的最小值等于 .11、9;(奉贤区2013届高三一模)11、(理)设函数()f x 的反函数是()1fx -,且()11--x f 过点()2,1,则()1y f x =-经过点 . 11.理()0,3(金山区2013届高三一模)1.函数f (x )=3x –2的反函数f –1(x )=________.1.23x +(定义域不写不扣分)(黄浦区2013届高三一模 理科)9.已知函数⎩⎨⎧=xx x f 3log )(2)0()0(≤>x x ,且函数()()F x f x x a =+-有且仅有两个零点,则实数a 的取值范围是 .9.(,1]-∞;(浦东新区2013届高三一模 理科)3.函数)2(log 2-=x y 的定义域为 ),3[+∞ .(嘉定区2013届高三一模 理科)14.设m 、R ∈n ,定义在区间],[n m 上的函数|)|4(log )(2x x f -=的值域是]2,0[,若关于t 的方程0121||=++⎪⎭⎫⎝⎛m t (R ∈t )有实数解,则n m +的取值范围是___________. 14.)2,1[(青浦区2013届高三一模)2.函数)2(log 1)(2≥+=x x x f 的反函数)2(2)(11≥=--x x fx .(松江区2013届高三一模 理科)3.若函数()23xf x =+的图像与()g x 的图像关于直线y x =对称,则(5)g = ▲ .3. 1(奉贤区2013届高三一模)11、(文)若函数21()log ()f x x a x =+-在区间⎥⎦⎤⎢⎣⎡2,21内有零点,则实数a 的取值范围是___.文⎥⎦⎤⎢⎣⎡252log ,1(浦东新区2013届高三一模 理科)5.函数1y =+0≥x )的反函数是 2(1)y x =-(1≥x ) .(黄浦区2013届高三一模 理科)12.已知函数()x f x a =(0a >且1a ≠)满足(2)(3)f f >,若y =1()f x -是()y f x =的反函数,则关于x 的不等式11(1)1f x -->的解集是 .12.1(1,)1a-; (金山区2013届高三一模)13.若函数y=f (x ) (x ∈R)满足:f (x +2)=f (x ),且x ∈[–1, 1]时,f (x ) = | x |,函数y=g (x )是定义在R 上的奇函数,且x ∈(0, +∞)时,g (x ) = log 3 x ,则函数y=f (x )的图像与函数y=g (x )的图像的交点个数为_______. 13.4(奉贤区2013届高三一模)7、设函数()()()a x x xx f sin 1-+=为奇函数,则=a .7.Z k k ∈+,22ππ(嘉定区2013届高三一模 理科)18.设函数)(x f y =是定义在R 上以1为周期的函数,若函数x x f x g 2)()(-=在区间]3,2[上的值域为]6,2[-,则)(x g 在区间]12,12[-上的值域为……………………( )A .]6,2[-B .]28,24[-C .]32,22[-D .]34,20[- 18.D(虹口区2013届高三一模)13、设定义在R 上的函数)(x f 是最小正周期为π2的偶函数,当],0[π∈x 时,1)(0<<x f ,且在]2,0[π上单调递减,在],2[ππ上单调递增,则函数x x f y sin )(-=在]10,10[ππ-上的零点个数为 . 13、20;(杨浦区2013届高三一模 理科)1. 若函数()xx f 3=的反函数为()x f1-,则()=-11f.1. 0;(奉贤区2013届高三一模)9、(理)已知函数sin ,0,()(1),0,x x f x f x x π≤⎧=⎨->⎩那么)65(f 的值为 .9.理21-(青浦区2013届高三一模)12.已知⎩⎨⎧≥<+-=1,1,1)2()(x ax x a x f x满足对任意21x x ≠都有0)()(2121>--x x x f x f 成立,那么a 的取值范围是_____⎪⎭⎫⎢⎣⎡2,23 .(奉贤区2013届高三一模)9、(文)已知函数2log ,0,()2,0.x x x f x x >⎧=⎨≤⎩ 若1()2f a =,则a =_________. 文1-=a 或2(崇明县2013届高三一模)5、已知1()y f x -=是函数2()2f x x =+(0)x ≤的反函数,则1(3)f -=. 5、1-(宝山区2013届期末)7.将函数sin ()cos xf x x的图像按向量n (a,0)=-(0a >)平移,所得图像对应的函数为偶函数,则a 的最小值为 . π65(崇明县2013届高三一模)14、已知()(2)(3)f x m x m x m =-++,()22x g x =-,若同时满足条件:①对于任意x R ∈,()0f x <或()0g x <成立; ②存在(,4)x ∈-∞-,使得()()0f x g x ⋅<成立.则m 的取值范围是. 14、(-4,-2)(奉贤区2013届高三一模)1、关于x 的方程()R n m n mx x ∈=++,02的一个根是i 23+-,则=m _________.1.;6=m(长宁区2013届高三一模)2、记函数()y f x =的反函数为1().y f x -=如果函数()y f x =的图像过点)2,1(,那么函数1()1y fx -=+的图像过点.__________ 2、)2,2((奉贤区2013届高三一模)5、已知,0,0>>y x 且,111=+yx 若m y x >+恒成立,则实数m 的取值范围是_________.5.4<m(宝山区2013届期末)8.设函数)(x f 是定义在R 上周期为3的奇函数,且2)1(=-f ,则(2011)(2012)f f += _.0(长宁区2013届高三一模)5、设()f x 为定义在R 上的奇函数,当0x ≥时,()22x f x x b =++(b 为常数),则(1)f -= 5、4-(宝山区2013届期末)14.设),(),,(2211y x B y x A 是平面直角坐标系上的两点,定义点A 到点B 的曼哈顿距离1212(,)L A B x x y y =-+-. 若点A(-1,1),B 在2y x =上,则(,)L A B 的最小值为 .74(长宁区2013届高三一模)13、(理)已知函数),()(2R b a b ax x x f ∈++-=的值域为]0,(-∞,若关于x 的不等式1)(->c x f 的解集为)1,4(+-m m ,则实数c 的值为._________ 13、(理)421-,(宝山区2013届期末)18.已知21,[1,0),()1,[0,1],x x f x x x +∈-⎧=⎨+∈⎩则下列函数的图像错误的是……………………( D )(A))1(-x f 的图像 (B))(x f -的图像 (C)|)(|x f 的图像 (D)|)(|x f 的图像(崇明县2013届高三一模)15、设函数()sin ,f x x =x R ∈,则下列结论错误的是………………………………………( ) A .()f x 的值域为[0,1] B .()f x 是偶函数 C .()f x 不是周期函数 D .()f x 不是单调函数 15、C(长宁区2013届高三一模)18、(理)函数sin xy x =,(,0)(0,)x ππ∈-的图象可能是下列图象中的 ( )18、C(黄浦区2013届高三一模 理科)23.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分7分,第3小题满分8分.对于函数()y f x =与常数,a b ,若(2)()f x af x b =+恒成立,则称(,)a b 为函数)(x f 的一个“P 数对”;若(2)()f x af x b ≥+恒成立,则称(,)a b 为函数)(x f 的一个“类P 数对”.设函数)(x f 的定义域为R +,且(1)3f =.(1)若(1,1)是()f x 的一个“P 数对”,求(2)(*)N n f n ∈;(2)若(2,0)-是()f x 的一个“P 数对”,且当[1,2)x ∈时()f x =23k x --,求()f x 在区间[1,2)n (*)N n ∈上的最大值与最小值;(3)若()f x 是增函数,且(2,2)-是()f x 的一个“类P 数对”,试比较下列各组中两个式子的大小,并说明理由.①(2)n f -与2n -+2(*)N n ∈;②()f x 与22x +((0,1])x ∈.23.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分7分,第3小题满分8分.解:(1)由题意知(2)()1f x f x =+恒成立,令2(*)N k x k =∈, 可得1(2)(2)1k k f f +=+,∴{(2)}k f 是公差为1的等差数列,故0(2)(2)n f f n =+,又0(2)3f =,故(2)3n f n =+. ………………………………3分 (2)当[1,2)x ∈时,()|23|f x k x =--,令1x =,可得(1)13f k =-=,解得4k =,即[1,2)x ∈时,()4|23|f x x =--, ………………………4分 故()f x 在[1,2)上的取值范围是[3,4]. 又(2,0)-是()f x 的一个“P 数对”,故(2)2()f x f x =-恒成立, 当1[2,2)k k x -∈(*)N k ∈时,1[1,2)2k x -∈,()2()4()24x x f x f f =-==…11(2)()2k k xf --=-, …………………6分故k 为奇数时,()f x 在1[2,2)k k -上的取值范围是11[32,2]k k -+⨯;当k 为偶数时,()f x 在1[2,2)k k -上的取值范围是11[2,32]k k +---⨯. …………………8分 所以当1n =时,()f x 在[1,2)n 上的最大值为4,最小值为3;当n 为不小于3的奇数时,()f x 在[1,2)n 上的最大值为12n +,最小值为2n -;当n 为不小于2的偶数时,()f x 在[1,2)n 上的最大值为2n ,最小值为12n +-.………10分 (3)由(2,2)-是()f x 的一个“类P 数对”,可知(2)2()2f x f x ≥-恒成立,即1()(2)12f x f x ≤+恒成立,令12k x =(*)N k ∈,可得1111()()1222k k f f -≤+, 即1111()2[()2]222k k f f --≤-对一切*N k ∈恒成立,所以1211111()2[()2][()2]22242n n n f f f ---≤-≤-≤…≤11[(1)2]22n n f -=,故(2)22n n f --≤+(*)N n ∈. …………………………………14分 若(0,1]x ∈,则必存在*N n ∈,使得111(,]22n n x -∈, 由()f x 是增函数,故1111()()222n n f x f --≤≤+, 又1112222222n n x -+>⨯+=+,故有()22f x x <+.…………………………………18分(金山区2013届高三一模)21.(本题满分14分,第1小题6分,第2小题8分)已知函数]2,0(,2)(2∈+-=x xa x x x f ,其中常数a > 0.(1) 当a = 4时,证明函数f (x )在]2,0(上是减函数; (2) 求函数f (x )的最小值.21.解:(1) 当4=a 时,24)(-+=xx x f ,…………………………………………1分 任取0<x 1<x 2≤2,则f (x 1)–f (x 2)=121244x x x x +--212121)4)((x x x x x x --=………………3分 因为0<x 1<x 2≤2,所以f (x 1)–f (x 2)>0,即f (x 1)>f (x 2)………………………………………5分 所以函数f (x )在]2,0(上是减函数;………………………………………………………6分 (2)2)(-+=xax x f 22-≥a ,……………………………………………………7分 当且仅当a x =时等号成立,…………………………………………………………8分当20≤<a ,即40≤<a 时,)(x f 的最小值为22-a ,………………………10分当2>a ,即4>a 时,)(x f 在]2,0(上单调递减,…………………………………11分 所以当2=x 时,)(x f 取得最小值为2a,………………………………………………13分综上所述:⎪⎩⎪⎨⎧>≤<-=.42,4022)(mina a a a x f ………………………………………14分(浦东新区2013届高三一模 理科)23.(本题满分18分,第1小题满分4分,第2小题满分4分,第3小题满分10分)设函数12,02()12(1),12x x T x x x ⎧≤<⎪⎪=⎨⎪-≤≤⎪⎩(1)求函数⎪⎭⎫ ⎝⎛=)2sin(x T y π和⎪⎭⎫⎝⎛=)(2sin x T y π的解析式; (2)是否存在非负实数a ,使得()()aT x T a x =恒成立,若存在,求出a 的值;若不存在,请说明理由;(3)定义1()(())n n T x T T x +=,且1()()T x T x = ()n N *∈ ① 当10,2n x ⎡⎤∈⎢⎥⎣⎦时,求()n y T x =的解析式; 已知下面正确的命题:当11,22n n i i x -+⎡⎤∈⎢⎥⎣⎦(121)n i N i *∈≤≤-,时,都有-1()()2n n n i T x T x =-恒成立.② 对于给定的正整数m ,若方程()m T x k x =恰有2m个不同的实数根,确定k 的取值范围; 若将这些根从小到大排列组成数列{}n x ()12m n ≤≤,求数列{}n x 所有2m项的和.解:(1)函数152sin 44+4+4+2233sin()21522sin 4+4+233x x k k k k k Zy T x x x k k k Zπππ⎧⎛⎫⎡⎫⎛⎤∈∈ ⎪⎪ ⎪⎢⎥⎪⎝⎭⎣⎭⎝⎦⎡⎤==⎨⎢⎥⎣⎦⎛⎫⎡⎤⎪-∈∈ ⎪⎢⎥⎪⎝⎭⎣⎦⎩,,,函数()()()[]1sin 20,22sin ()=sin 0,121sin 2-2,122x x y T x x x x x ππππ⎧⎡⎫∈⎪⎪⎢⎪⎣⎭⎛⎫==∈⎨⎪⎝⎭⎡⎤⎪∈⎢⎥⎪⎣⎦⎩ ……4分(2)12,02()12(1),12ax x y aT x a x x ⎧≤<⎪⎪==⎨⎪-≤≤⎪⎩,12,02()12(1),12ax ax y T ax ax ax ⎧≤<⎪⎪==⎨⎪-≤≤⎪⎩……6分 当0a =时,则有(())()0a T x T ax ==恒成立.当0a >时,当且仅当1=a 时有(())()()a T x T ax T x ==恒成立.综上可知当0a =或1a =时,(())()a T x T ax =恒成立;………………………8分(3)① 当10,2n x ⎡⎤∈⎢⎥⎣⎦时,对于任意的正整数11j N i n *∈≤≤-,,都有1022jx ≤≤故有2112()(2)(2)(2)(2)2j n n n n n n j y T x T x T x T x T x x ----========…13分② 由①可知当10,2n x ⎡⎤∈⎢⎥⎣⎦时,有()2n n T x x =,根据命题的结论可得, 当1202,,2222nn n n x ⎡⎤⎡⎤∈⊆⎢⎥⎢⎥⎣⎦⎣⎦时,有110102,,22222n n n n n x -⎡⎤⎡⎤-∈⊆⎢⎥⎢⎥⎣⎦⎣⎦, 故有1111()()=2()2222n nn n n n T x T x x x --=--=-+. 因此同理归纳得到,当1,22nn i i x +⎡⎤∈⎢⎥⎣⎦(021)n i N i ∈≤≤-,时, 211()(1)(2)=2221ninn nx i i T x x i x i i ⎧-⎪=---+⎨-++⎪⎩,是偶数,是奇数……………………15分 对于给定的正整数m ,1,22mm i i x +⎡⎤∈⎢⎥⎣⎦(021)m i N i ∈≤≤-,时, 解方程()mT x kx =得,()121(1)2(1)2i m i i x k++--=--, 要使方程()m T x kx =在[]0,1x ∈上恰有2m个不同的实数根,对于任意021mi N i ∈≤≤-,,必须()121(1)122(1)22i m m im i ii k ++--+<<--恒成立, 解得2(0,)21mmk ∈-, 若将这些根从小到大排列组成数列{}n x ,由此可得()121(1)2(1)2n nm nn x k+-+-=+- ()12mn N i *∈≤≤,.……………………17分 故数列{}n x 所有2m项的和为:12212m m S x x x x -=+++024(22)246222m m m m k k ++++-++++=+-+122(42)4m m m k k --=-.……18分 (长宁区2013届高三一模)19、(本题满分12分)已知(2cos 23sin ,1),(cos ,)m x x n x y =+=-,满足0m n ⋅=.(1)将y 表示为x 的函数()f x ,并求()f x 的最小正周期;(2)(理)已知,,a b c 分别为ABC ∆的三个内角,,A B C 对应的边长,若3)2A(=f ,且2a =,求b c +的取值范围.19、解(1)由0m n ⋅=得22cos cos 0x x x y +-= …………3分即22cos cos cos 2212sin(2)16y x x x x x x π=+=++=++所以()2sin(2)16f x x π=++,其最小正周期为π. …………6分(2)(理)因为()32Af =,则2,62k Z A k πππ+=∈+.因为A 为三角形内角,所以3A π=…………9分法一:由正弦定理得B sin 334b =,C sin 334c =, )6sin(4)32sin(334sin 334sin 334sin 334ππ+=-+=+=+B B B C B c b ,]1,21()6sin(∈+∴πB ,]4,2(∈+∴c b , 所以b c +的取值范围为(2,4] …………12分 法二:3cos2222πbc c b a -+=,因此bc c b 3)(42-+=,因为4)(2c b bc +≤,所以4)()(422c b c b +-+≥,16)(2≤+c b ,4≤+∴c b .又2>+c b ,所以b c +的取值范围为(2,4] …………12分(文)(2)65626,30ππππ≤+≤∴≤≤x x ,因此)62sin(π+x 的最小值为21,…………9分由)(x f a <恒成立,得2)]([min =<x f a ,所以实数a 的取值范围是)2,(-∞. ………12分(宝山区2013届期末)21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知函数2()log (424)x x f x b =+⋅+,()g x x =. (1)当5b =-时,求()f x 的定义域;(2)若()()f x g x >恒成立,求b 的取值范围.解:(1)由45240x x -⋅+>………………………………………………3分 解得()f x 的定义域为(,0)(2,)-∞⋃+∞.………………………6分 (2)由()()f x g x >得4242x x x b +⋅+>,即4122x xb ⎛⎫>-+⎪⎝⎭……………………9分 令4()122x xh x ⎛⎫=-+⎪⎝⎭,则()3h x ≤-,………………………………………………12分 ∴ 当3b >-时,()()f x g x >恒成立.………………………………………………14分(长宁区2013届高三一模)22. (本小题满分18分) (理)已知函数 ()f x =。
2013年上海市高考数学试卷(文科)参考答案与试题解析一、填空题(本大题共有14题,满分56分),考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分1.(4分)(2013•上海)不等式<0的解为0<x<.解:原不等式化为,,<2.(4分)(2013•上海)在等差数列{a n}中,若a1+a2+a3+a4=30,则a2+a3=15.3.(4分)(2013•上海)设m∈R,m2+m﹣2+(m2﹣1)i是纯虚数,其中i是虚数单位,则m=﹣2.4.(4分)(2013•上海)已知,,则y=1.解:由已知,,5.(4分)(2013•上海)已知△ABC的内角A,B,C所对的边分别是a,b,c,若a2+ab+b2﹣c2=0,则角C的大小是.cosC==,C=故答案为:6.(4分)(2013•上海)某学校高一年级男生人数占该年级学生人数的40%,在一次考试中,男,女平均分数分别为75、80,则这次考试该年级学生平均分数为78.=40%7.(4分)(2013•上海)设常数a∈R,若的二项展开式中x7项的系数为﹣10,则a=﹣2.的展开式的通项为(8.(4分)(2013•上海)方程的实数解为log34.的实数解为9.(4分)(2013•上海)若cosxcosy+sinxsiny=,则cos(2x﹣2y)=﹣.=..10.(4分)(2013•上海)已知圆柱Ω的母线长为l,底面半径为r,O是上底面圆心,A,B 是下底面圆周上两个不同的点,BC是母线,如图,若直线OA与BC所成角的大小为,则=.为中,直接由.中,因为,所以故答案为11.(4分)(2013•上海)盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意抽取两个,则这两个球的编号之积为偶数的概率是(结果用最简分数表示)个球共有个球共有=21所取两球编号之积为偶数包括均为偶数、一奇一偶两种情况,共有所以两球编号之积为偶数的概率为:.故答案为:.,12.(4分)(2013•上海)设AB是椭圆Γ的长轴,点C在Γ上,且∠CBA=,若AB=4,BC=,则Γ的两个焦点之间的距离为.由题意画出图形,设椭圆的标准方程为,由条件结合等腰直角三角形的边,CBA=,,,=c=.故答案为:13.(4分)(2013•上海)设常数a>0,若9x+对一切正实数x成立,则a的取值范围为[,+∞).9x+)9x+9x+≥)≥9x=时,等号成立[14.(4分)(2013•上海)已知正方形ABCD的边长为1,记以A为起点,其余顶点为终点的向量分别为;以C为起点,其余顶点为终点的向量分别为,若i,j,k,l∈{1,2,3},且i≠j,k≠l,则的最小值是﹣5.为起点,其余顶点为终点的向量,,,以分别为,的值,从而得出为起点,其余顶点为终点的向量分别为,,分别为,,.如图建立=二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分15.(5分)(2013•上海)函数f(x)=x2﹣1(x≥0)的反函数为f﹣1(x),则f﹣1(2)的值Bx=16.(5分)(2013•上海)设常数a∈R,集合A={x|(x﹣1)(x﹣a)≥0},B={x|x≥a﹣1},若17.(5分)(2013•上海)钱大姐常说“好货不便宜”,她这句话的意思是:“好货”是“不便宜”18.(5分)(2013•上海)记椭圆围成的区域(含边界)为Ωn(n=1,2,…),当点(x,y)分别在Ω1,Ω2,…上时,x+y的最大值分别是M1,M2,…,则M n=()先由椭圆得到这个椭圆的参数方程为:解:把椭圆得,椭圆的参数方程为:=M=2三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤19.(12分)(2013•上海)如图,正三棱锥O﹣ABC的底面边长为2,高为1,求该三棱锥的体积及表面积.其面积为=,D=OD=∴三棱锥的侧面积为×,20.(14分)(2013•上海)甲厂以x千克/小时的速度匀速生产某种产品(生产条件要求1≤x≤10),每一小时可获得的利润是100(5x+1﹣)元.(1)求证:生产a千克该产品所获得的利润为100a(5+)元;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.千克该产品所用的时间是小时,)元,即可得到生产5+千克该产品所用的时间是小时,﹣﹣×5+==故获得最大利润为21.(14分)(2013•上海)已知函数f(x)=2sin(ωx),其中常数ω>0(1)令ω=1,判断函数F(x)=f(x)+f(x+)的奇偶性,并说明理由;(2)令ω=2,将函数y=f(x)的图象向左平移个单位,再向上平移1个单位,得到函数y=g(x)的图象,对任意a∈R,求y=g(x)在区间[a,a+10π]上零点个数的所有可能值.)))x+),(﹣(﹣)()))的图象向左平移个单位,再向上平移x+x+或22.(16分)(2013•上海)已知函数f(x)=2﹣|x|,无穷数列{a n}满足a n+1=f(a n),n∈N*(1)若a1=0,求a2,a3,a4;(2)若a1>0,且a1,a2,a3成等比数列,求a1的值(3)是否存在a1,使得a1,a2,…,a n,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.,得,得(舍去)或..23.(18分)(2013•上海)如图,已知双曲线C1:,曲线C2:|y|=|x|+1,P是平面内一点,若存在过点P的直线与C1,C2都有公共点,则称P为“C1﹣C2型点”(1)在正确证明C1的左焦点是“C1﹣C2型点“时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);(2)设直线y=kx与C2有公共点,求证|k|>1,进而证明原点不是“C1﹣C2型点”;(3)求证:圆x2+y2=内的点都不是“C1﹣C2型点”)由双曲线方程可知,双曲线的左焦点为(时过圆的左焦点为(,其中所以方程组,得,则由方程组,得:有实数解,的距离,,从而因此,圆。
专题十七二项式定理
汇编2013年3月(闸北区2013届高三一模文科)2.已知的展开式中,的系数为,则.2.2;
(普陀区2013届高三一模文科)8.在的二项展开式中,常数项等于 . 8.180
(浦东新区2013届高三一模文科)11.二项式的展开式前三项系数成等差数列,则. (松江区2013届高三一模文科)11.若二项式展开式中项的系数是7,则= ▲ ..11.
(闵行区2013届高三一模文科)6.(文)若二项式展开式的各项系数的和为,则其展开式的所有二项式系数中最大的是. (用数字作答)6.;
(黄浦区2013届高三一模文科)8.的展开式中的系数是(用数字作答).8.36;
(宝山区2013届期末)9.二项式展开式中的常数项是 (用具体数值表示)
(长宁区2013届高三一模)4、展开式中含项的系数为. 4、1 (崇明县2013届高三一模)6、展开式中的系数是.(用数字作答)6、10
(金山区2013届高三一模)7.在的二项展开式中,常数项等于.(用数值表示) 7.–160 (杨浦区2013届高三一模文科)6. 若的二项展开式中,的系数为,则实数.6. ;。