半加器与全加器PPT课件
- 格式:ppt
- 大小:139.50 KB
- 文档页数:9
实验五半加器和全加器实验五半加器和全加器一、实验目的1(掌握组合逻辑电路的分析和设计方法。
2(验证半加器、全加器、奇偶校验器的逻辑功能。
二、实验原理使用中、小规模集成门电路分析和设计组合逻辑电路是数字逻辑电路的任务之一。
本实验中有全加器的逻辑功能的测试,又有半加器、全加器的逻辑设计。
通过实验要求熟练掌握组合逻辑电路的分析和设计方法。
实验中使用的二输入端四异或门的电路型号为74LS86,四位二进制全加器的型号为74LS83A,其外引线排列及逻辑图如下:14 13 12 11 10 9 8VCC=1 =174LS86=1 =1GND1 2 3 4 5 6 774LS86引脚排列16 15 14 13 12 11 10 9C C GND B AΣ 44011 BΣ4174LS83AA 2A Σ AB V Σ B 4333CC221 2 3 4 5 6 7 874LS83引脚排列74LS83A是一个内部超前进位的高速四位二进制串行进位全加器,它接收两个四位二进制数(A~A,B~B),和一个进位输入(C),并对每一位产生二进制和14140 (Σ~Σ)输出,还有从最高有效位(第四位)产生的进位输出(C)。
该组件有144越过所有四个位产生内部超前进位的特点,提高了运算速度。
另外不需要对逻辑电平反相,就可以实现循环进位。
三、实验仪器和器件1(实验仪器(1)DZX-2B型电子学综合实验装置(2)万用表(MF47型)2(器件(1)74LS00(二输入端四与非门)(2)74LS86(二输入端四异或门)(3)74LS83(四位二进制全加器)(4)74LS54(双二双三输入端与或非门)四、实验内容1(设计用纯与非门组成的半加器,分析、验证其逻辑功能;解:?根据设计任务列出真值表输入输出A B Y C0 0 0 00 1 1 01 0 1 01 1 0 1?根据真值表写出逻辑表达式C=AB Y,AB,AB?对逻辑表达式进行化简Y =A?B C=AB?根据所用逻辑门的类型将化简后的逻辑表达式整理成符合要求的形式Y =A?B= C=AB,AB AAB,BAB?根据整理后的逻辑表达式画出逻辑图? Y2 & 接A 逻=AB Y? 辑1& & YY 1 接电Y=A AB 电2平 ? B 平& Y=B AB ?3 Y3 显Y=A?B 示 ? & C=AB C图5-1 半加器设计参考图?根据逻辑图装接实验电路,测试其逻辑功能并加以修正表5-1’(验证) 表5-1(分析)输入输出输入逐级输出Y B C B A B Y C A B YYYY C 1 2 3A 0 1 A 0 1 0 0 0 0 0 0 1 1 1 0 00 0 1 0 0 0 0 1 1 0 0 1 1 1 0 1 01 1 1 0 0 1 1 0 1 0 1 0 1 0 1 1 01 1 0 1 1 1 0 1 1 0 1 卡诺图Y= A?B C=AB 2(设计用异或门组成半加器,并测试其逻辑功能; 解:???步骤同上?根据所用逻辑门的类型将化简后的逻辑表达式整理成符合要求的形式Y =A?B C= AB,AB?根据整理后的逻辑表达式画出逻辑图?根据逻辑图装接实验电路,测试其逻辑功能并加以修正表5-2输入输出接接=1 A Y ? 逻电A B Y C 辑平显电0 0 0 0 平示 B ? C ? & & 0 1 1 0 图5-2测量由异或门组成的半加器的逻辑功能 1 0 1 01 1 0 12(设计用74LS54、74LS86、74LS00组成全加器,并测试其逻辑功能;解:?根据设计任务列出真值表输入输出 ?根据真值表写出逻辑表达式 Y C A B C 00 0 0 0 0 Y,ABC,ABC,ABC,ABC00000 1 0 1 0C,ABC,ABC,ABC,ABC00001 0 0 1 01 1 0 0 1 ?对逻辑表达式进行化简0 0 1 1 0,,,,,,,,Y,AB,ABC,AB,ABC,A,BC,A,BC0 1 1 0 1 00001 0 1 0 1 ,,,,,,,A,BC,A,BC,A,B,C0001 1 1 1 1,,,,,,C,ABC,C,AB,ABC,AB,A,BC0000?根据所用逻辑门的类型将化简后的逻辑表达式整理成符合要求的形式,, Y,A,B,C0,, C,AB,A,BC0?根据整理后的逻辑表达式画出逻辑图?根据逻辑图装接实验电路,测试其逻辑功能并加以修正表5-3接电平显示 C 输入输出 Y A B CY C 074LS00 & 0 0 0 0 0 ? 0 1 0 1 0 ?1 0 0 1 0 ?1 =1 =11 1 0 0 1 & & & & 0 0 1 1 0 1/2 74LS860 1 1 0 1 ? ? ? ? ? ? ? 1 0 1 0 1 ? A B C0 1 1 1 1 1 74LS54 接逻辑电平图5-34(分析四位二进制全加器74LS83A的逻辑功能;接电平显示Σ Σ Σ Σ 4321接接电“0” CC4 0 FAFAFAFA4 3 2 1 平或显“1” ? ? 示 ? ?74LS83A A/AA/AB/BB/B24 13 24 24接逻辑电平图5-4 分析四位二进制全加器74LS83A的逻辑功能表5-4输出输入C=0 C=1 00B/BA/A B/B A/A ΣΣΣΣCΣΣΣΣC24 2413131 2 3 4 4 1 2 3 4 4 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 0 1 0 1 0 1 0 0 0 1 1 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 0 1 0 0 0 1 0 10 1 1 0 1 0 0 1 0 1 1 1 1 1 0 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0 0 0 0 1 0 11 1 0 0 1 0 1 1 0 1 0 1 1 0 0 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 1 1 0 1 0 1 1 1 1 0 0 0 0 0 1 1 0 1 1 0 0 1 0 1 1 0 1 0 1 1 1 0 00 0 1 0 1 1 0 1 0 1 1 1 0 1 1 0 0 1 1 0 1 0 1 1 1 1 1 0 1 0 0 1 1 0 1 01 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1*5(用加法器74LS83A实现BCD码和余三码之间的相互转换。
一、一、 半加器和全加器的设计半加器和全加器的设计
1.1. 实验目的:通过一位全加器的设计和仿真,熟悉基于Quartus QuartusⅡ软件进行原理图设Ⅱ软件进行原理图设计的基本流程。
该全加器通过两步实现,首先设计一个半加器,将半加器生成原理图符号,以供调用,然后用半加器构成全加器。
以供调用,然后用半加器构成全加器。
2.2. 原理图设计源文件原理图设计源文件
(1)半加器的设计原理图)半加器的设计原理图
图1-1 半加器原理图半加器原理图
(2)全加器的设计原理图)全加器的设计原理图
图1-2 全加器原理图全加器原理图
3.3. 设计仿真图设计仿真图
(1) 半加器的功能仿真图半加器的功能仿真图
图1-3 半加器功能仿真图半加器功能仿真图
(2) 全加器的功能仿真图全加器的功能仿真图
图1-4 全加器功能仿真图全加器功能仿真图。
组合逻辑电路是数字电路中的一种重要类型,主要用于实现逻辑运算和计算功能。
其中,半加器和全加器是组合逻辑电路的两种基本结构,通过它们可以实现数字加法运算。
本文将详细介绍组合逻辑电路的相关知识,包括半加器、全加器以及逻辑运算的原理和应用。
一、半加器半加器是一种简单的数字电路,用于对两个输入进行加法运算,并输出其和及进位。
其结构由两个输入端(A、B)、两个输出端(S、C)组成,其中S表示和,C表示进位。
半加器的真值表如下:A B S C0 0 0 00 1 1 01 0 1 01 1 0 1从真值表可以看出,半加器只能实现单位加法运算,并不能处理进位的问题。
当需要进行多位数的加法运算时,就需要使用全加器来实现。
二、全加器全加器是用于多位数加法运算的重要逻辑电路,它能够处理两个输入以及上一位的进位,并输出本位的和以及进位。
全加器由三个输入端(A、B、Cin)和两个输出端(S、Cout)组成,其中Cin表示上一位的进位,S表示和,Cout表示进位。
全加器的真值表如下:A B Cin S Cout0 0 0 0 00 0 1 1 00 1 0 1 00 1 1 0 11 0 0 1 01 0 1 0 11 1 0 0 11 1 1 1 1通过全加器的应用,可以实现多位数的加法运算,并能够处理进位的问题,是数字电路中的重要组成部分。
三、逻辑运算除了实现加法运算外,组合逻辑电路还可用于实现逻辑运算,包括与、或、非、异或等运算。
这些逻辑运算能够帮助数字电路实现复杂的逻辑功能,例如比较、判断、选择等。
逻辑运算的应用十分广泛,不仅在计算机系统中大量使用,而且在通信、控制、测量等领域也有着重要的作用。
四、组合逻辑电路的应用组合逻辑电路在数字电路中有着广泛的应用,其不仅可以实现加法运算和逻辑运算,还可以用于构建各种数字系统,包括计数器、时序逻辑电路、状态机、多媒体处理器等。
组合逻辑电路还在通信、控制、仪器仪表等领域得到了广泛的应用,为现代科技的发展提供了重要支持。
二进制半加器和全加器一、引言在计算机科学中,二进制加法是一项基础而重要的操作。
二进制半加器和全加器是实现二进制加法的关键组件。
本文将介绍二进制半加器和全加器的定义、功能及应用。
二、二进制半加器二进制半加器是一种简单的电子电路,用于对两个二进制位进行相加。
其输入包括两个二进制位A和B,输出包括两个部分:和位S 和进位位C。
半加器的真值表如下所示:输入输出A B S C0 0 0 00 1 1 01 0 1 01 1 0 1从真值表可以看出,和位S等于A和B的异或操作结果,进位位C 等于A和B的与操作结果。
半加器的逻辑电路图如下所示:A-----\|+----AND----S| |XOR || |B-----/三、二进制全加器二进制全加器是一种能够对三个输入位进行相加的电子电路。
其输入包括两个二进制位A和B,以及一个进位位Cin。
输出包括两个部分:和位S和进位位Cout。
全加器的真值表如下所示:输入输出A B Cin S Cout0 0 0 0 00 0 1 1 00 1 0 1 00 1 1 0 11 0 0 1 01 0 1 0 11 1 0 0 11 1 1 1 1从真值表可以看出,和位S等于A、B和Cin的异或操作结果,进位位Cout等于A、B和Cin的与操作结果和A、B或Cin的与操作结果的异或操作结果。
全加器的逻辑电路图如下所示:A-----\|+----AND1----S| |XOR || |Cin----AND2----Cout| |+----OR四、应用二进制半加器和全加器在计算机科学中有着广泛的应用。
在计算机的算术逻辑单元(ALU)中,半加器用于对两个二进制位进行加法运算,全加器用于对三个二进制位进行加法运算。
ALU是计算机中负责执行算术和逻辑运算的关键部件之一。
二进制半加器和全加器还可以用于实现其他复杂的逻辑电路,如计数器、移位寄存器、多路选择器等。
在这些应用中,半加器和全加器作为基本的构建模块,可以灵活组合和连接,实现各种复杂的逻辑功能。