LTE物理信号
- 格式:pptx
- 大小:887.59 KB
- 文档页数:21
1.物理层的基本概念1。
1 LTE系统帧结构在空中接口上,LTE系统定义了无线侦来进行信号的传输,1个无线帧的长度为10ms.LTE支持两种帧结构FDD和TDD。
在FDD帧结构中,一个长度为10ms的无线帧由10个长度为1ms的子帧构成,每个子帧由两个长度为0.5ms的时隙构成。
基本时间单位在TDD帧结构中,一个长度为10ms的无线帧由2个长度为5ms的半帧构成,每个半帧由5个长度为1ms的子帧构成,其中包括4个普通子帧和1个特殊子帧。
普通子帧由两个0。
5ms的时隙组成,而特殊子帧由3个特殊时隙(DwPTS、GP 和UpPTS)组成。
1。
2LTE下行时隙结构和物理资源LTE系统中的物理资源均被分配到物理资源网格中传输,也就是说在每个slot中传输的信号由一个资源网格描述。
一个资源网格是由个下行物理资源块(Physical Resource Block,记为RB)组成,而每个RB又由个资源元素(resource element,记为RE)构成。
一个RB在时域上包含个OFDM 符号,在频域上包含个子载波.RE是资源网的基本单位,一个资源网包含个资源元。
在一个slot中资源元素由索引对(k,l)唯一定义,其中k=0,…,-1,l=0,…,-1分别为频域和时域的索引.LTE下行资源网格图具体如图由图可知,一个资源网格由频域索引坐标上个子载波和时域索引坐标上个OFDM符号交错分割而成.其中,是RB个数,它由下行传输带宽决定,为每RB分配的子载波个数,1个RB在频域上对应12个子载波,子载波间隔为15kHZ,180KHz=15 KHz x 12(normal CP).和的个数由CP(Cyclic Prefix,CP)类型和子载波间隔决定.物理资源块参数与CP长度关子载波间隔OFDM符号数(一个时隙)RB占用子载波数RB对应的RE数常规CP15KHz 7 12 84扩展CP15KHz 6 12 727.5KHz 3 24 721.3 资源元素组物理资源元素组(Resource—element Groups,记为REG)是用来定义控制信道到资源元素的映射的.控制信息的映射,需要把物理资源首先定义为资源组,然后再映射。
LTE工作过程一、LTE开机及工作过程如下图所示:二、小区搜索及同步过程整个小区搜索及同步过程的示意图及流程图如下:1)UE开机,在可能存在LTE小区的几个中心频点上接收信号(PSS),以接收信号强度来判断这个频点周围是否可能存在小区,如果UE保存了上次关机时的频点和运营商信息,则开机后会先在上次驻留的小区上尝试;如果没有,就要在划分给LTE系统的频带范围内做全频段扫描,发现信号较强的频点去尝试;2)然后在这个中心频点周围收PSS(主同步信号),它占用了中心频带的6RB,因此可以兼容所有的系统带宽,信号以5ms为周期重复,在子帧#0发送,并且是ZC序列,具有很强的相关性,因此可以直接检测并接收到,据此可以得到小区组里小区ID,同时确定5ms的时隙边界,同时通过检查这个信号就可以知道循环前缀的长度以及采用的是FDD还是TDD(因为TDD的PSS是放在特殊子帧里面,位置有所不同,基于此来做判断)由于它是5ms 重复,因为在这一步它还无法获得帧同步;3)5ms时隙同步后,在PSS基础上向前搜索SSS,SSS由两个端随机序列组成,前后半帧的映射正好相反,因此只要接收到两个SSS就可以确定10ms的边界,达到了帧同步的目的。
由于SSS信号携带了小区组ID,跟PSS结合就可以获得物理层ID(CELL ID),这样就可以进一步得到下行参考信号的结构信息。
4)在获得帧同步以后就可以读取PBCH了,通过上面两步获得了下行参考信号结构,通过解调参考信号可以进一步的精确时隙与频率同步,同时可以为解调PBCH做信道估计了。
PBCH在子帧#0的slot #1上发送,就是紧靠PSS,通过解调PBCH,可以得到系统帧号和带宽信息,以及PHICH的配置以及天线配置。
系统帧号以及天线数设计相对比较巧妙: SFN(系统帧数)位长为10bit,也就是取值从0-1023循环。
在PBCH的MIB(master information block)广播中只广播前8位,剩下的两位根据该帧在PBCH 40ms周期窗口的位置确定,第一个10ms帧为00,第二帧为01,第三帧为10,第四帧为11。
LTE下行物理信号与信道1.下行物理信号♦下行同步信号▫主同步信号(PSS)PSS主同步信号:使用Zadoff Chu(ZC)序列产生,用于区别扇区号▫辅同步信号(SSS)SSS辅同步信号:使用伪随机序列产生,用于区别基站LTE小区、基站规划:168个基站(SSS来区分基站号),每个基站3个扇区(PSS区分扇区)。
一共504个小区(PCI-Physical Cell Identifier ),在LTE系统中进行复用。
作用:UE与系统进行同步♦下行参考信号▫小区专用参考信号(CRS)CRS:用于下行信道估计,及非beamforming模式下的解调。
调度上下行资源,用作切换测量。
▫MBSFN参考信号▫UE专用参考信号(DRS)DRS:仅出现于波束赋型模式,用于UE解调。
▫PRS:主要用于定位下行参考信号特点作用1:由上述特点,参考信号可以用来测量下行信道的质量作用2:位置是固定的,当一个参考信号发送时候,不能有任何其他信号发射;作用3:识别天线;2.下行物理信道(1)功能概述:物理下行控制信道(PDCCH):承载下行调度信息,用于指示PDSCH相关的传输格式,资源分配,HARQ信息等;物理下行共享信道(PDSCH):承载下行业务数据 ;物理广播信道(PBCH):承载广播信息 ,传递UE接入系统所必需的系统信息,如带宽,天线数目等;物理控制格式指示信道(PCFICH):一个子帧中用于PDCCH的OFDM符号数目;物理HARQ指示信道(PHICH):用于NodB向UE 反馈和PUSCH相关的ACK/NACK信息,承载HARQ信息;物理多播信道(PMCH):传递MBMS相关的数据,在支持MBMS业务时,用于承载多小区的广播信息。
(2)下行信道的映射(3)下行物理信道的处理过程.1、下行物理信道一般处理流程具体如下:1)加扰:对将在一个物理信道上传输的每一个码字中的编码比特进行加扰;上行链路物理信道加扰的作用是区分用户,下行链路加扰可以区分小区和信道。
第十四课:LTE物理信道一、 上行物理信道处理流程LTE 的上行传输是基于SC-FDMA 的,LTE 定义了3 个上行物理信道,即物理上行共享信道(Physical Uplink Shared Channel,PUSCH)、物理上行控制信道(Physical Uplink Control Channel,PUCCH)、物理随即接入信道(Physical Random Access Channel,PRACH)。
下面将对上行时隙物理资源粒子、上行物理信道基本处理过程流程及各个信道具体处理流程作详细描述。
1.上行时隙结构和物理资源定义(1)资源栅格上行传输使用的最小资源单位叫做资源粒子(Resource Element,RE),在RE 之上,还定义了资源块(Resource Block,RB),一个RB 包含若干个RE。
在时域上最小资源粒度为一个SC-FDMA 符号,在频域上最小粒度为子载波。
子载波数与带宽有关,带宽越大,包含的子载波越多。
上行的子载波间隔 Δf 只有一种,15kHz。
上行资源栅格图如图1 所示。
图1 上行资源栅格(2)资源粒子资源栅格中的最小单元为资源粒子(RE),它由时域SC-FDMA 符号和频域子载波唯一确定。
(3)资源块一个资源块RB 由N symb 个在时域上连续的SC-FDMA 符号以及N sc 个在频域上连续的子载波构成。
2. 上行物理信道基本处理流程上行物理信道基本处理流程如图2 所示:1)加扰:对将要在物理信道上传输的码字中的编码比特进行加扰。
2)调制:对加扰后的比特进行调制,产生复值调制符号。
图2 上行物理信道基本处理流程3)层映射:将复值调制符号映射到一个或者多个传输层。
4)预编码:对将要在各个天线端口上发送的每个传输层上的复数值调制符号进行预编码。
5)映射到资源元素:把每个天线端口的复值调制符号映射到资源元素上。
6)生成SC-FDMA 信号:为每个天线端口生成复值时域的SC-FDMA 符号。