LTE-物理层介绍
- 格式:ppt
- 大小:3.83 MB
- 文档页数:63
lte协议栈LTE(Long Term Evolution)是第四代移动通信网络(4G)的一种技术标准,其协议栈是指在LTE网络中用于实现通信功能的一系列协议。
LTE协议栈包括物理层、数据链路层、网络层和应用层等组成部分,下面将对LTE协议栈的各个层进行介绍。
物理层是整个协议栈的最底层,主要负责对无线信号的调制解调、信道编码和解码等任务。
其具体功能包括无线信号调制解调、功率控制、调度和调制解调器功耗管理等。
物理层的设计需要考虑带宽、频率复用、多天线技术等因素,以提供高吞吐量和低时延的通信性能。
数据链路层负责将物理层传输的信号分割成较小的数据单元,并提供数据传输的可靠性和安全性保证。
其主要功能包括信道编码与解码、错误检测和纠错、调度和资源分配、混合自动重传请求(HARQ)等。
数据链路层还负责和物理层之间的协作,以确保数据的可靠交付和高效传输。
网络层是实现网络互连和路由功能的层,其主要任务是将数据传输到目标终端设备。
网络层的功能包括寻址与路由、移动性管理、IP数据包的分组交换和转发等。
在LTE中,网络层采用IP协议作为基础,支持IPv4和IPv6两种寻址方式,以适应不同的网络需求和应用场景。
应用层是整个协议栈的最上层,其主要任务是提供各种高层服务和功能。
应用层的协议包括HTTP、FTP、DNS等,用于实现互联网接入、内容下载和域名解析等功能。
此外,应用层也支持多媒体业务的传输和处理,如语音通话、视频流媒体等。
除了以上四个主要层次外,LTE协议栈还包括安全层和控制层。
安全层用于提供通信的保密性、完整性和认证等安全功能,以防止数据泄露和网络攻击。
控制层则负责网络的管理和控制功能,包括寻呼、接入控制、呼叫建立和释放等。
总之,LTE协议栈是实现LTE网络功能的核心部分,其各个层次之间密切协作,共同实现数据的传输和处理。
物理层提供无线信号的调制解调和信道编码解码等功能,数据链路层负责对数据进行分割和编码纠错,网络层实现数据的路由和转发,应用层提供各种高层服务和功能。
LTE 协议解读2.3 参考信号参考信号(Reference Signal ,RS ),就是常说的“导频”信号,是由发射端提供给接收端用于信道估计或信道探测的一种已知信号。
2.3.1 下行参考信号下行参考信号有以下目的。
(1)下行信道质量测量。
(2)下行信道估计,用于UE 端的相干检测和解调。
下行参考信号由已知的参考信号构成,下行参考信号是以RE 为单位的,即一个参考信号占用一个RE 。
这些参考信号可分为两列:第1参考信号和第2参考信号。
第1参考信号位于每个0.5ms 时隙的第1个OFDM 符号,第2参考信号位于每个时隙的倒数第3个OFDM 符号。
第1参考信号位于第1个OFDM 符号有助于下行控制信号被尽早解调。
在频域上,每6个子载波插入一个参考信号,这个数值是在信道估计性能和RS 开销之间求取平衡的结果,RS 过疏则信道估计性能无法接受;RS 过密则会造成RS 开销过大。
每6个子载波插入一个RS 既能在典型频率选择性衰落信道中获得良好的信道估计性能,又能将RS 控制在较低水平。
RS 的时域密度也是根据相同的原理确定的,每个时隙插入两行RS 既可以在典型的运动速度下获得满意的信道估计性能,RS 的开销又不是很大。
在参考信号的设置上的考虑主要是基于对高速移动性的支持,有兴趣大家可以参考【3】这本书里面的推算。
另外,第0参考信号和第1参考信号在频域上是交错放置的。
而且,下行参考信号的设计还必须有一定的正交性,以有效地支持多天线并行传输(最多需支持4个并行流),实际上通过在时域上错开放置第2与第3参考信号来解决这个问题。
如图:版权所有,转载请与本人联系 Page 1 of 22yongzhiDigitally signed by yongzhiDN: cn=yongzhi, c=CN, o=Deng, ou=Deng, email=yongzhid@ Reason: 希望大家能够尊重我的劳动成果Date: 2010.04.17 11:34:21 +08'00'O n e a n t e n n a p o r tT w o a n t e n n a p o r t sk,l )F o u r a n t e n n a p o r t seven-numbered slots odd-numbered slots Antenna port 0even-numbered slots odd-numbered slots Antenna port 1even-numbered slots odd-numbered slots Antenna port 2even-numbered slots odd-numbered slotsAntenna port 3图2.3.1-1 天线端口对应的参考信号下图是摘自3GPP 36.211,不过它那个图有点问题,在单天线的时候,其实它也假设是同时存在天线端口0,1的,因此,对应到天线端口1的资源粒子是空着的,不能使用。
LTE物理层⼏个基本概念的定义和相互关系传输块(transport block),码字(codeword),层映射(layer mapping),传输层(transmission layer), 阶(rank), 和预编码(Precoding),天线端⼝(antenna port)是LTE物理层的⼏个基本概念,搞清楚这⼏个概念的定义和相互关系才能透彻理解LTE多天线技术和调度算法。
传输块(Transport block)⼀个传输块就是包含MAC PDU的⼀个数据块,这个数据块会在⼀个TTI上传输,也是HARQ重传的单位。
LTE规定:对于每个终端⼀个TTI最多可以发送两个传输块。
码字(codeword)⼀个码字就是在⼀个TTI上发送的包含了CRC位并经过了编码(Encoding)和速率匹配(Rate matching)之后的独⽴传输块(transport block)。
LTE规定:对于每个终端⼀个TTI最多可以发送两个码字。
层映射(Layer mapping)将对⼀个或两个码字分别进⾏扰码(Scrambling)和调制(Modulation)之后得到的复数符号根据层映射矩阵映射到⼀个或多个传输层。
层映射矩阵的维数为C×R,C为码字的个数,R为阶,也就是使⽤的传输层的个数。
传输层(Transmission layer)和阶(Rank)⼀个传输层对应于⼀个⽆线发射模式。
使⽤的传输层的个数就叫阶(Rank)。
预编码(Precoding)根据预编码矩阵将传输层映射到天线端⼝。
预编码矩阵的维数为R×P,R为阶,也就是使⽤的传输层的个数;P为天线端⼝的个数。
天线端⼝(Antenna Port)⼀个天线端⼝(antenna port)可以是⼀个物理发射天线,也可以是多个物理发射天线的合并。
在这两种情况下,终端(UE)的接收机(Receiver)都不会去分解来⾃⼀个天线端⼝的信号,因为从终端的⾓度来看,不管信道是由单个物理发射天线形成的,还是由多个物理发射天线合并⽽成的,这个天线端⼝对应的参考信号(Reference Signal)就定义了这个天线端⼝,终端都可以根据这个参考信号得到这个天线端⼝的信道估计。