LTE物理层过程
- 格式:ppt
- 大小:808.50 KB
- 文档页数:25
lte物理层处理流程LTE(Long Term Evolution)是一种无线通信技术,它的物理层处理流程是实现无线信号的传输和接收。
本文将从物理层处理流程的角度,详细介绍LTE系统是如何处理数据的。
LTE物理层处理流程主要包括信道编码、调制和解调、信道复用和解复用、多天线技术以及功率控制等环节。
LTE系统对要传输的数据进行信道编码。
信道编码的目的是为了提高信道的可靠性和传输效率。
在信道编码过程中,数据被划分为一定的块,并添加纠错码,以便在传输过程中能够纠正误码。
纠错码的添加可以提高传输的可靠性,保证数据的完整性。
接下来,经过信道编码的数据被调制。
调制的目的是将数字信号转换为模拟信号,以便在无线信道中传输。
LTE系统采用的调制方式是正交频分复用(OFDM),它将数据分成多个子载波进行传输,提高了信道的利用率和抗干扰能力。
在调制完成后,LTE系统对信号进行解调。
解调的过程是调制的逆过程,将接收到的模拟信号转换为数字信号。
解调后的信号被送入解码器进行纠错,以还原原始数据。
解调和解码的过程是为了消除传输过程中的干扰和误差,确保数据的可靠性。
LTE系统还需要进行信道复用和解复用的操作。
信道复用是指将多个用户的数据进行合理分配,使它们能够在同一时隙中传输。
信道解复用则是将接收到的多路信号进行分离,恢复出原始的用户数据。
信道复用和解复用的过程是为了提高系统的容量和效率,使多个用户能够同时进行通信。
LTE系统还采用了多天线技术,包括发射端的空间多址技术和接收端的空间分集技术。
发射端的空间多址技术利用多个天线同时发送信号,提高了信号的传输速率和可靠性。
接收端的空间分集技术则利用多个天线接收信号,通过对多个接收信号进行合理的处理,提高了信号的抗干扰能力和覆盖范围。
LTE系统还需要进行功率控制,即根据信道的质量和用户的需求,调整发射功率,以达到最佳的传输效果。
功率控制的目的是提高系统的能效,减少干扰和功耗。
LTE物理层处理流程主要包括信道编码、调制和解调、信道复用和解复用、多天线技术以及功率控制等环节。
转LTE学习笔记:物理层过程二2019年06月05日10:37:14 Zimri阅读数476.测量过程物理层的测量过程一般是由高层配置和控制的,物理层只是提供测量的能力而已。
根据测量性质的不同,测量可分为同频测量、异频测量、异系统测量;根据测量的物理量不同,可分为电平大小测量、信道质量测量、负荷大小测量等。
根据测量报告的汇报方式,可分为周期性测量、事件测量等。
协议中一般根据测量的位置不同,将测量分为UE侧的测量、eUTRAN侧的测量。
6.1 手机侧测量UE侧的测量有连接状态的测量和空闲状态的测量。
手机处于连接状态的时候,eUTRAN给UE发送RRC连接重配置消息,这个消息相当于eUTRAN对UE进行测量控制命令。
这个命令包括:要求UE进行的测量类型及ID,建立、修改、还是释放一个测量的命令,测量对象、测量数量、测量报告的数量和触发报告的方式(周期性报告、事件性汇报)等。
手机处于空闲状态的时候,eUTRAN的测量控制命令是用系统消息(System Information)广播给UE的。
UE侧测量的参考位置是在UE的天线连接口处。
UE可以测量的物理量包括:RSRP(Reference Signal Received Power,参考信号接收电平):一定频带内,特定小区参考信号RS的多个RE的有用信号的平均接收功率(同一个RB内的RE平均功率)。
RSSI(Received Signal Strength Indicator,接收信号强度指示):系统在一定频带内,数个RB内的OFDM符号的总接收功率的平均值,包含有用信号、循环前缀干扰、噪声在内的所有功率。
eUTRAN内的RSSI主要用于干扰测量。
RSRQ(Reference Signal Received Quality,参考信号接收质量):是一种信噪比,即RSRP 和RSSI的比值RSRP一般是单个RB的功率,RSSI可能是N个RB的功率,所以RSRQ=(N*RSRP)/RSSI。
LTE工作过程一、LTE开机及工作过程如下图所示:二、小区搜索及同步过程整个小区搜索及同步过程的示意图及流程图如下:1)UE开机,在可能存在LTE小区的几个中心频点上接收信号(PSS),以接收信号强度来判断这个频点周围是否可能存在小区,如果UE保存了上次关机时的频点和运营商信息,则开机后会先在上次驻留的小区上尝试;如果没有,就要在划分给LTE系统的频带范围内做全频段扫描,发现信号较强的频点去尝试;2)然后在这个中心频点周围收PSS(主同步信号),它占用了中心频带的6RB,因此可以兼容所有的系统带宽,信号以5ms为周期重复,在子帧#0发送,并且是ZC序列,具有很强的相关性,因此可以直接检测并接收到,据此可以得到小区组里小区ID,同时确定5ms的时隙边界,同时通过检查这个信号就可以知道循环前缀的长度以及采用的是FDD还是TDD(因为TDD的PSS是放在特殊子帧里面,位置有所不同,基于此来做判断)由于它是5ms 重复,因为在这一步它还无法获得帧同步;3)5ms时隙同步后,在PSS基础上向前搜索SSS,SSS由两个端随机序列组成,前后半帧的映射正好相反,因此只要接收到两个SSS就可以确定10ms的边界,达到了帧同步的目的。
由于SSS信号携带了小区组ID,跟PSS结合就可以获得物理层ID(CELL ID),这样就可以进一步得到下行参考信号的结构信息。
4)在获得帧同步以后就可以读取PBCH了,通过上面两步获得了下行参考信号结构,通过解调参考信号可以进一步的精确时隙与频率同步,同时可以为解调PBCH做信道估计了。
PBCH在子帧#0的slot #1上发送,就是紧靠PSS,通过解调PBCH,可以得到系统帧号和带宽信息,以及PHICH的配置以及天线配置。
系统帧号以及天线数设计相对比较巧妙: SFN(系统帧数)位长为10bit,也就是取值从0-1023循环。
在PBCH的MIB(master information block)广播中只广播前8位,剩下的两位根据该帧在PBCH 40ms周期窗口的位置确定,第一个10ms帧为00,第二帧为01,第三帧为10,第四帧为11。
第七课:LTE物理层信道概述与过程双工方式是传输的一种方式,相对而言有单工方式,半双工,全双工。
数据可以同时在两个方向上进行传输。
根据载体的不同又分为FF和TDD,我们一起来看看定义。
讲到这里给大家讲讲4G的发展史,在3G里面我们有三大标准,TD-SCDMA以TDD为主,W以FDD为主,LTE的发展目标就是两网融合,并且转向全IP,实现网络的平滑升级。
就针对这两种方式设计出两套针结构方案。
LTE使用天线端口来区分空间上的资源。
天线端口是从接收机的角度来定义的,即如果接收机需要区分资源在空间上的差别,就需要定义多个天线端口。
天线端口与实际的物理天线端口没有一一对应的关系。
由于目前LTE上行仅支持单射频链路的传输,不需要区分空间上的资源,所以上行还没有引入天线端口的概念。
目前LTE下行定义了三类天线端口,分别对应于天线端口序号0~5。
lRB为transportblock,一个RB包含12个子载波,20M带宽为100个RB,1200个子载波。
最小值是6个RB,最大值是110个RB,但是去掉保护频带,实际可用的应该是100RB。
100个RB既要给业务也要给控制,还要给RS。
LTE中RB为承载业务信息的最小的资源调度单位。
RB对是两个RB,时域占用一个子帧。
一个子帧里两个时隙的频域占用可以不一样。
REG的定义:REG用于控制信道至物理资源的映射。
每个REG由4个可分配的频域连续(子载波连续)的RE 构成,这4个RE位于同一个OFDM 符号。
REG为PHICHPCFICH设计CCE为PDCCH设计它沿用了UMTS系统一直都采用的10MS无线帧的长度,LTE在数据传输延时方面提出了更高的要求并且在调度方面要求更加灵活,小于5MS,所以要采用更加小的时隙传输间隔,以前的是5MS,但是太小了,大家想想会带来什么问题,是不是调度时需要的信令开销更大了,所以权衡下,最后就设计出了下面的FDD帧结构模型。
在每一个0.5MS时隙结构中,有数据符号和CP组成,针对不同的CP,OFDM符号数也不同,用常规CP,每个时隙的符号数为7个,扩展CP每个时隙为6个,这样一种帧结构,每个控制信道应该是占用每个时隙中的几个字符,数量级要更加小一些,具体的分配在后面我们要讲到。
lte操作中涉及到哪些物理层过程LTE基于旧有的GSM/EDGE和UMTS/HSPA网络技术,是GSM/UMTS标准的升级,你知道LTE在操作中涉及哪些物理技术吗?接下来店铺为你整理了lte操作中涉及到哪些物理层过程,一起来看看吧。
LTE物理层过程:小区搜索与下行同步通过小区搜索的过程,终端与服务小区实现下行信号时间和频率的同步,并且确定小区的物理层ID。
物理层小区搜索的过程主要涉及两个同步信号,即主、辅同步信号(PSS/SSS)。
过程中包括了下行时间和频率的同步、小区物理ID的检测和OFDM信号CP长度的检测(Normal或ExtendedCP)。
完成这些操作后,终端就可以开始读取服务小区的广播信道(PBCH)中的系统信息,进行进一步的操作。
这期间,在通过同步信号的检测与服务小区获得同步以后,终端可以利用下行导频信号(CRS)进行更精确的时间与频率同步以及同步的维持。
LTE物理层过程:上行传输时间的调整与同步通过上行传输时间的调整,终端与服务小区实现上行信号时间的同步,使得不同用户的上行信号同步到达基站。
相关过程包括异步随机接入过程中的传输时间调整,以及连接状态下的上行同步保持。
在异步随机接入过程中,作为随机接入的响应消息,基站向终端发送长度为11bit的定时调整命令(TimingAdvanceCommand),终端根据该信息调整上行的发送时间,实现上行同步。
在连接状态下,MAC层的控制信息携带了长度为6bit的定时调整命令,终端将根据该信息对上行的发送时间进行调整,实现上行同步的保持。
定时调整命令的精度是(即15/(15000*2048)),从收到命令到调整后上行发送之间的延时是6ms,即在子帧收到调整命令之后,该信息将终端应用于从子帧开始的上行发送中LTE物理层过程:功率控制针对上行和下行信号的发送特点,LTE物理层定义了相应的功率控制机制。
对于上行信号,终端的功率控制在节电和抑制用户间干扰的方面具有重要意义,所以,相应地采用闭环功率控制的机制,控制终端在上行单载波符号上的发送功率。
lte物理层处理过程
LTE(Long Term Evolution)是一种无线通信技术,其物理层处理过程是整个LTE系统中非常重要的一部分。
物理层处理过程涉及到无线信号的调制、多路复用、功率控制、信道编码等一系列操作,以确保数据的可靠传输和高效利用无线资源。
首先,在LTE系统中,物理层处理过程涉及到信号的调制和多路复用。
LTE系统采用正交频分复用(OFDM)技术,通过将数据分割成多个子载波并进行调制,以实现高速数据传输。
同时,多路复用技术将多个用户的数据同时传输到同一个频段上,提高了频谱的利用率。
其次,在物理层处理过程中,功率控制是非常重要的一环。
LTE 系统通过动态功率控制技术,根据用户的信道质量和距离,调整发射功率,以确保信号的覆盖范围和质量。
这样可以有效减少干扰,提高系统的容量和覆盖范围。
另外,信道编码也是物理层处理过程中的关键环节。
LTE系统采用了Turbo码和LDPC码等高效的编码技术,通过对数据进行编码和交织,提高了信道的抗干扰能力和纠错性能,从而保证了数据传
输的可靠性。
除此之外,物理层处理过程还涉及到天线技术、信道估计和均衡等方面。
LTE系统采用了MIMO技术,通过多天线传输和接收,提高了系统的频谱效率和容量。
同时,信道估计和均衡技术可以有效抑制多径干扰,提高信号的质量和覆盖范围。
总之,LTE物理层处理过程是一个复杂而精密的系统工程,涉及到调制、多路复用、功率控制、信道编码等多个方面。
通过这些处理过程,LTE系统可以实现高速数据传输、广覆盖和高可靠性,为用户提供了更加丰富和便捷的无线通信体验。
一般下行过程详细流程图1:LTE 的一般下行过程的详细流程图1是我根据LTE 物理层协议专门画的LTE 的一般下行过程的详细流程。
旨在让大家明白物理层是怎么工作的。
有以下两点说明:1、 上行过程很相似,只是上行中UE 的能力比较小,调度信息等是基站通过下行控制信息指定的。
36.302中可以看到如图2所示的一些较详细信息,是上行过程的部分流程。
Node B UEError图2:上行共享信道的物理模型2、 这里是一般下行过程,是下行共享信道的整个物理过程,下行还有控制信道、广播信道等。
那些的过程可能只有其中的部分。
或者还有些没有提到的。
详细内容可以参考36.212.和36.302.3、 本人水平有限,难免有错误和遗漏,发现请指出。
下面详细点介绍图1中的相关内容。
分成4个部分:1、红色所示的物理信道与调制(36.211);2、蓝色所示的复用与信道编码(36.212);3、橙色所示的物理层测量(36.214);以及物理层过程相关内容(36.213)。
四个部分的关系如图3所示。
物理信道与调制(36.211)直接与最下面的空中接口交互信息。
是离发射端和接收端最近的。
然后复用与信道编码(36.212)是在211的上面一点点。
可以认为有一个逻辑信道,在这部分要做信道编码等,与211有个映射关系。
213是高层和最后发射端的一个联系着。
高层通过213给陆玲辉编辑于2010年4月10日星期六211发命令等。
214是高层为了获得信道等信息而设置的。
To/From Higher Layers图3、物理层协议间以及与高层间关系1、211物理信道与调制:该部分包括图1中的红色部分。
物理信道有很多种,如下表1和2中的红色部分就是部分物理信道。
表1、下行传输信道与物理信道映射表2、上行传输信道和物理信道的映射表1和2就是212中的,是上/下行传输信道和物理信道的映射关系。
在我画的图中就是第四点数控复用部分提到的映射到物理信道。
可以看到,有好几种传输信道对应几种物理信道。
第六章 TD-LTE 系统物理层基本过程6.1小区搜索与同步小区搜索过程是指UE 获得与所在eNodeB 的下行同步(包括时间同步和频率同步),检测到该小区物理层小区ID 。
UE 基于上述信息,接收并读取该小区的广播信息,从而获取小区的系统信息以决定后续的UE 操作,如小区重选、驻留、发起随机接入等操作。
当UE 完成与基站的下行同步后,需要不断检测服务小区的下行链路质量,确保UE 能够正确接收下行广播和控制信息。
同时,为了保证基站能够正确接收UE 发送的数据,UE 必须取得并保持与基站的上行同步。
6.1.1配置同步信号在LTE 系统中,小区同步主要是通过下行信道中传输的同步信号来实现的。
下行同步信号分为主同步信号(Primary Synchronous Signal,PSS )和辅同步信号(Secondary Synchronous Signal,SSS)。
TD-LTE 中,支持504个小区ID ,并将所有的小区ID 划分为168个小区组,每个小区组内有504/168=3个小区ID 。
小区ID 号由主同步序列编号 和辅同步序列编号共同决定,具体关系为。
小区搜索的第一步是检测出PSS ,在根据二者间的位置偏移检测SSS ,进而利用上述关系式计算出小区ID 。
采用PSS 和SSS 两种同步信号能够加快小区搜索的速度。
下面对两种同步信号做简单介绍。
)1(ID N )1()2(3ID ID cell ID N N N +=)2(ID N 1) PSS 序列为进行快速准确的小区搜索,PSS 序列必须具备良好的相关性、频域平坦性、低复杂度等性能,TD-LTE 的PSS 序列采用长度为63的频域Zadoff-Chu (ZC )序列[1]。
ZC 序列广泛应用于LTE 中,除了PSS ,还包括随机接入前导和上行链路参考信号。
ZC 序列可以表示为 ]2/)1(2exp[ZCq N nl n n q j a ++−=π 其中,是ZC 序列的根指数,l N l N n ZC ,},1,...1{∈−∈}1,...1{−∈ZC q N a 可以是任何整数,为了简单在LTE 中设置l=0。
1 概述LTE是3GPP在2005年启动的新一代无线系统研究项目。
LTE采用了基于OFDM技术的空中接口设计,目标是构建出高速率、低时延、分组优化的无线接入系统,提供更高的数据速率和频谱利用率。
图1-1LTE系统网络架构整个系统由核心网络(EPC)、无线网络(E-UTRAN)和用户设备(UE)3部分组成,见上图。
其中EPC负责核心网部分;E-UTRAN(LTE)负责接入网部分,由eNodeB节点组成;UE指用户终端设备。
系统支持FDD和TDD两种双工方式,并对传统UMTS网络架构进行了优化,其中LTE仅包含eNodeB,不再有RNC;EPC也做了较大的简化。
这使得整个系统呈现扁平化特性。
系统的扁平化设计使得接口也得到简化。
其中eNodeB与EPC通过S1接口连接;eNodeB之间通过X2接口连接;eNodeB与UE 通过Uu接口连接。
2 物理层过程本文重点讨论LTE空中接口物理层的一些主要过程。
2.1 下行物理层过程2.1.1 小区搜索过程UE使用小区搜索过程识别并获得小区下行同步,从而可以读取小区广播信息。
此过程在初始接入和切换中都会用到。
为了简化小区搜索过程,同步信道总是占用可用频谱的中间63个子载波。
不论小区分配了多少带宽,UE只需处理这63个子载波。
UE通过获取三个物理信号完成小区搜索。
这三个信号是P-SCH信号、S-SCH信号和下行参考信号(导频)。
一个同步信道由一个P-SCH信号和一个S-SCH信号组成。
同步信道每个帧发送两次。
规范定义了3个P-SCH信号,使用长度为62的频域Zadoff-Chu序列。
每个P-SCH 信号与物理层小区标识组内的一个物理层小区标识对应。
S-SCH信号有168种组合,与168个物理层小区标识组对应。
故在获得了P-SCH和S-SCH信号后UE可以确定当前小区标识。
下行参考信号用于更精确的时间同步和频率同步。
完成小区搜索后UE可获得时间/频率同步,小区ID识别,CP长度检测。