LTE E-UTRAN物理层介绍
- 格式:ppt
- 大小:3.61 MB
- 文档页数:64
1、EPC: Evolved Packet Core ,4G核心网,进化型的分组核心。
(evolve:[i'vɔlv] 演变; 进化)2、BBU: Building Base Band Unit 室内基带处理单元(基带处理单元),使用在分布式基站架构3、RRU:Radio Remote Unit 射频拉远单元,使用在分布式基站架构BBU+RRU架构的技术特点是将基站分成近端机(即无限基带控制Radio Server)和远端机(即射频拉远RRU)两部分,两者之间通过光纤连接,其接口是基于开放式CPRI接口,可以稳定地与主流厂商的设备进行连接。
一个BBU可以支持多个RRU,采用BBU+RRU多通道方案可以很好地解决大型场馆的室内覆盖。
通常大型建筑物内部的层间有楼板,房间有墙壁,室内与室内用户之间的空间分割。
BBU集中放置在机房,RRU可安装在楼层,两者之间采用光纤传输,RRU 再通过同轴电缆及功分器(耦合器)等连接至天线,即主干采用光纤,支路采用同轴电缆。
对于下行方向:光纤从BBU连接到RRU,BBU和RRU之间传输的是基带数字信号,这样基站可以控制某个用户的信号从指定的RRU通道发射出去,这样可以大大降低对本小区其他通道上用户的干扰。
对于上行方向:用户手机信号被距离最近的通道收到,然后从这个通道经过光纤传到基站,这样可以大大降低不同通道上用户之间的干扰。
4、CPRI: Common Public Radio Interface ,通用公共无线电接口通用公共无线接口(CPRI)联盟是一个工业合作组织,致力于从事无线基站内部无线设备控制中心(简称REC)及无线设备(简称RE)之间主要接口规范的指定。
CPRI:采用数字的方式来传输基带信号,其数字接口用两种,标准的CPRI和OBSAI接口。
接口上包括三种不同的信息流:用户层数据流,控制管理层数据流,同步数据流。
协议包括两层:L1(物理层),L2:数据连接层。
LTE网络架构和协议栈随着移动通信技术的不断发展,LTE(Long Term Evolution)成为4G移动通信的主流技术。
LTE网络架构和协议栈是构建LTE系统的核心组成部分,下面将对LTE网络架构和协议栈进行详细介绍。
一、LTE网络架构LTE网络架构由两部分组成:E-UTRAN(Evolved UMTS Terrestrial Radio Access Network)和EPC(Evolved Packet Core)。
1. E-UTRAN(Evolved UMTS Terrestrial Radio Access Network)E-UTRAN是LTE系统的无线接入网络,包括基站和与之相连的核心网。
基站被称为eNodeB,负责无线信号的传输和接收。
eNodeB通过X2接口相连,用于基站之间的信号传输和协同。
与核心网的连接通过S1接口实现,包括控制面和用户面的传输。
2. EPC(Evolved Packet Core)EPC是LTE系统的核心网络,负责用户数据的传输和控制信息的处理。
EPC由三个主要组成部分构成:MME(Mobility Management Entity)、SGW(Serving Gateway)和PGW(Packet Data Network Gateway)。
MME负责移动性管理和控制平面的处理;SGW负责用户数据的传输;PGW连接到外部数据网络,负责数据分组的处理和路由。
二、LTE协议栈LTE协议栈由各种协议组成,实现系统中不同层次之间的通信和控制。
LTE协议栈按照OSI(Open Systems Interconnection)参考模型分为七层,分别是物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。
1. 物理层物理层负责数据的传输和调制解调。
LTE使用OFDM(Orthogonal Frequency Division Multiplexing)技术进行信号的调制和解调,以提高传输效率和抗干扰性能。
第1章 3G概述1.2.5 E-UTRAN概述E-UTRAN在系统性能和能力方面的研究目标主要有以下几点:(1)有更高的空中接口峰值速率以及频谱效率。
下行10Mbit/s,频谱效率5bit(s·Hz);上行50Mbit/s,频谱效率25bit(s· Hz);系统的最大带宽为20 MHz,还支持其他如1.25MHz、1.6MHz、2.5MHz、5MHz、10MHz和15MHz等系统带宽,以及“成对”与“非成对”频段的部署,以保证将来在系统部署上的灵活性。
(2)可对现有频谱及其他资源进行有效重用。
(3)有更好的覆盖性能,即小区覆盖半径在5km内,都能够符合上述性能要求,提高小区边缘用户的吞吐量。
(4)有更短的通信时延和更简化的网络结构。
(5)支持增强的IP多媒体子系统(IP Multimedia Sub-system,IMS)和核心网;尽可能保证后向兼容,有效地支持多种业务类型,尤其是分组域(PS-Domain)业务(如V oIP等)。
(6)有更先进的无线资源管理和QoS处理能力。
优化系统为低移动速度终端提供服务,同时也应支持高移动速度终端。
(7)与现有网络的平滑演进及跨系统的移动性管理。
(8)降低空中接口和网络架构的成本。
(9)实现合理的终端复杂度、成本和耗电。
(10)支持增强型的广播多播业务。
1.E-UTRAN物理层技术特点在E-UTRAN物理层的下行方向,采用了正交频分复用(OFDM)技术来满足100Mbit/s 的数据速率和频谱效率的要求,通过配置子载波数量来实现1.25~20MHz的灵活带宽配置。
它采用0.5ms的最小传输时间间隔(TTI),减小了传输时延;采用4.7ms的循环冗余前缀(Cyclic Prefix),在不增加大量系统开销的同时,保证了时延扩展的处理。
利用OFDM的特性,在原有的自适应调制编码(AMC)机制中,增加了新的一维自适应频率调整,使得资源调度更为灵活,效率更高。
规范编号规范名称内容更新时间射频系列规范TS 36.101 UE无线发送和接收描述FDD和TDD E—UTRA UE的最小射频(RF)特性08—Oct—2010TS 36.104 BS无线发送与接收描述E—UTRA BS在成对频谱和非成对频谱的最小RF特性30—Sep-2010TS 36.106 FDD直放站无线发送与接收描述FDD直放站的射频要求和基本测试条件30—Sep—2010TS 36.113 BS与直放站的电磁兼容包含对E—UTRA基站、直放站和补充设备的电磁兼容(EMC)评估01—Oct—2010TS 36.124 移动终端和辅助设备的电磁兼容的要求建立了对于E—UTRA终端和附属设备的主要EMC要求,保证不对其他设备产生电磁干扰,并保证自身对电磁干扰有一定的免疫性。
定义了EMC测试方法、频率范围、最小性能要求等01-Oct—2010TS 36。
133 支持无线资源管理的要求描述支持FDD和TDD E-UTRA的无线资源管理需求,包括对E—UTRAN和UE测量的要求,以及针对延迟和反馈特性的点对点动态性和互动的要求08-Oct—2010TS 36.141 BS一致性测试描述对FDD/TDDE—UTRA基站的射频测试方法和一致30—Sep—2010性要求TS 36.143 FDD直放站一致性测试描述了FDD直放站的一致性规范,基于36。
106中定义的核心要求和基本方法,对详细的测试方法、过程、环境和一致性要求等进行详细说明01-Oct-2010TS 36.171 支持辅助全球导航卫星系统(A—GNSS)的要求描述了基于UE和UE辅助FDD或TDD的辅助全球导航卫星系统终端的最低性能21-Jun-2010TS 36.307 UE支持零散频段的要求定义了终端支持与版本无关频段时所要满足的要求。
04—Oct-2010物理层系列规范TS 36。
201LTE物理层——总体描述物理层综述协议,主要包括物理层在协议结构中的位置和功能,包括物理层4个规范36。