Poisson过程
- 格式:doc
- 大小:1.19 MB
- 文档页数:14
第三章 Poisson 过程教学目的:(1)了解计数过程的概念; (2)掌握泊松过程两种定义的等价性;(3)掌握泊松过程的到达时刻的分布、等待时间的分布和来到时刻的条件分布;(4)了解泊松过程的三种推广。
教学重点:(1)泊松过程两种定义的等价性;(2)泊松过程的到达时刻的分布、等待时间的分布和来到时刻的条件分布;(3)泊松过程的三种推广。
教学难点:(1)泊松过程两种定义的等价性的证明; (2)泊松过程来到时刻的条件分布; (3)泊松过程的推广。
3.1 Poisson 过程教学目的:掌握Poisson 过程的定义及等价定义;会进行Poisson 过程相关的概率的计算。
教学重点:Poisson 过程的定义与其等价定义等价性的证明;Poisson 过程相关的概率的计算。
教学难点:Poisson 过程的定义与其等价定义等价性的证明。
Poisson 过程是一类重要的计数过程,先给出计数过程的定义定义3.1:{(),0}N t t ≥随机过程称为计数过程,如果()0N t t 表示从到时刻 某一A 特定事件发生的次数,它具备以下两个特点: (1)()N t 取值为整数;(2)()()()-()(,]s t N s N t N t N s s t <≤时,且表示时间A 内事件发生的次数。
计数过程有着广泛的应用,如:某商店一段时间内购物的顾客数;某段时 间内电话转换台呼叫的次数;加油站一段时间内等候加油的人数等。
如果在不相交的时间区间中发生的事件个数是独立的,则称该计数过程有独立增量。
即当123,t t t <<2132()-()()-()X t X t X t X t 有与是独立的。
若在任一时间区间中的事件个数的分布只依赖于,时间区间的长度则计数 过程有平稳增量。
即对一切12120(,]t t s t s t s <>++及,在中事件个数 21()()N t s N t s +-+12(,]t t 与区间中事件的个数21()()N t N t -有相同的分布。
poisson过程大数定律
大数定律(Law of Large Numbers)是概率论中的一个定理,它描述了当独立随机变量的个数很大时,这些随机变量的均值会接近它们的期望值。
对于泊松过程(Poisson Process)来说,它是一种随机过程,用来描述事件在一定时间或空间范围内的随机发生情况。
泊松过程的特点是事件发生的间隔时间服从指数分布。
如果我们在一段时间内观察泊松过程发生的事件次数,根据大数定律,当观察事件次数足够大时,这些事件次数的平均值会接近于其期望值,即泊松分布的参数λ乘以观察的时间长度。
换句话说,当观察时间足够长时,泊松过程的事件发生率的估计值会越来越接近真实的发生率。
用数学符号表示,设N(t)为在时间段[0,t]内发生的事件次数,λ为泊松分布的参数(表示单位时间内事件的平均发生率),则根据大数定律:
lim(t->∞) N(t)/t = λ
即当观察时间t趋向无穷大时,事件次数N(t)除以观察时间t 的比值会接近λ。
总结起来,大数定律表明,当观察时间足够长时,泊松过程的事件发生率的估计值会越来越接近真实的发生率。
这个定律在
众多实际应用中具有重要的意义,尤其在统计学和概率论中扮演着重要的角色。
泊松过程的定义泊松过程(Poisson Process)是一种随机过程,它表示了在固定时间段内发生的不同类型事件的概率分布。
泊松过程由泊松分布发展而来,它是一种概率分布,其中包含一个无限的平均特征。
泊松过程是一种重要的概率过程,在许多领域都有应用,例如通讯、生物学、信号处理等等。
泊松过程的定义是描述一个不断发生的随机事件的概率分布,即它是一种持续的随机过程,表示在给定的时间段内,某种类型的事件在某个时间段内会发生多少次。
这种过程的性质是:在一个给定的时间段内,随机事件的发生次数是一个服从泊松分布的随机变量。
泊松过程的定义一般可以描述为:设定一个时间段Δt,若在Δt内某种类型的事件发生m次,则该事件的发生概率满足泊松分布:P(m) = (λΔt)^me-λΔt/ m!,其中λ 是发生次数的平均数,Δt 是时间段,m 是发生次数。
泊松过程的定义还包括“独立性”的要求,即在一定的时间段内,发生的每一次事件都是相互独立的。
此外,泊松过程还有一个重要的性质——“不确定性”,即在一定时间段内,发生的每一次事件是不确定的,也就是说,我们不能准确预测每次发生的次数。
泊松过程是一种重要的概率过程,在一定的时间段内,对某种事件的发生次数的预测,可以使用泊松分布来实现。
泊松过程的应用可以追溯到19世纪,由法国数学家和物理学家泊松(Simeon Denis Poisson)发现,并且受到广泛的应用。
泊松过程的定义和性质是概率论中的重要概念,它主要用于描述在一定的时间段内,某种类型的事件发生的概率分布。
它可以用来描述不同类型事件发生的概率,从而可以模拟不同类型事件的发生情况。
同时,它可以用来研究一定时间段内,某种类型事件发生的概率,从而帮助我们更好地预测未来事件的发生情况。
泊松过程公式范文泊松过程(Poisson process)是概率论中的一种重要的随机过程。
它以数学家西莫恩·庞加莱(Siméon Denis Poisson)的名字命名,他在19世纪早期首次引入了这个概念。
泊松过程是一种离散时间(时间按照一定的间隔划分)连续状态(可以不断地发生事件)的随机过程。
泊松过程的定义是:在一段时间内,事件发生的次数服从泊松分布(Poisson distribution)。
这段时间可以是无穷小的时间间隔,也可以是有限的时间窗口。
泊松过程的关键特征是事件之间的时间间隔都是独立的且呈指数分布。
所谓指数分布是指事件之间的时间间隔满足指数分布的概率密度函数,即事件发生的概率与时间间隔的长度成正比。
泊松过程的数学定义可以表示为:P(N(t)=k)=(e^(-λt)*(λt)^k)/k!其中,N(t)表示在时间t内发生的事件次数,k表示事件的个数,λ表示单位时间内平均发生的事件个数。
根据泊松过程的定义,可以得到一些重要的性质和公式。
首先是事件发生的概率。
在时间t内发生k次事件的概率可以用公式P(N(t)=k)表示,其中λt表示单位时间内平均发生的事件个数。
这个公式是泊松分布的概率质量函数。
其次是事件之间的时间间隔。
由于泊松过程中时间间隔是独立的且呈指数分布,所以事件发生的时间间隔满足无记忆性(memoryless)的特性。
无记忆性意味着事件的发生与之前的事件的发生时间无关,只与发生事件的频率有关。
再次是事件的到达间隔。
事件的到达间隔是指两个连续事件之间的时间间隔。
根据泊松过程的定义,事件的到达间隔呈指数分布。
事件的到达间隔的期望值(也称为平均间隔)为1/λ,即单位事件到达的平均时间间隔。
最后是超过特定事件个数的概率。
假设我们需要计算在一定时间内超过n次事件发生的概率。
可以用公式P(N(t) > n) = 1 - P(N(t) <= n)= 1 - ∑(i=0 to n) (e^(-λt) * (λt)^i) / i!来计算。
泊松过程详细分析与公式泊松过程(Poisson process)是一种描述时间间隔发生事件的随机过程。
它由法国数学家西蒙·邦努力·泊松(Siméon Denis Poisson)创立,被广泛应用于各个领域,例如物理学、生物学、通信工程、金融学等。
泊松过程的定义如下:在一个时间段内,事件以一定频率随机发生,且事件之间是独立的。
泊松过程具有以下几个特点:1.事件的发生次数是离散的,且在一个固定时间段内可以是0个、1个、2个......无限多个。
2.事件之间的时间间隔是随机的,并且满足指数分布。
3.事件的发生频率是恒定的。
在泊松过程中,事件的发生次数服从泊松分布。
泊松分布的概率质量函数表示了事件在一个特定时间段内发生k次的概率,公式为:P(k)=(λ^k*e^(-λ))/k!其中,λ是事件的发生强度,也称为时间单位内事件发生的平均次数。
k是事件发生的次数。
泊松过程的强度参数λ可以理解为单位时间内事件发生的平均次数。
因此,单位时间内事件发生的概率为λ,单位时间内不发生事件的概率为1-λ。
泊松过程的平均时间间隔为1/λ,也即泊松过程中连续两次事件的时间间隔不超过1/λ的概率为1-e^(-λt),其中t表示时间间隔。
根据泊松过程的定义,事件之间的时间间隔是独立的,因此事件的发生时间是随机的。
泊松过程在实际应用中具有很大的灵活性。
例如,在通信工程中,泊松过程可以用来模拟数据包到达路由器的时间间隔;在金融学中,泊松过程可以用来模拟股票价格的变动情况;在生物学中,泊松过程可以用来研究神经元放电的规律。
通过对泊松过程的建模分析,可以更好地了解事件的发生规律,从而做出相应的决策。
总结起来,泊松过程是一种描述时间间隔发生事件的随机过程。
它具有离散和独立的特点,事件之间的时间间隔满足指数分布,事件的发生次数服从泊松分布。
泊松过程广泛应用于各个领域,通过对泊松过程的建模和分析,可以更好地理解事件的发生规律并做出相应的决策。
第4章Poisson过程Poisson过程是一种常见的随机过程,被广泛应用于各个领域,包括计算机科学、物理学、生物学等。
本章将介绍Poisson过程的定义、特性和应用,并详细解释其背后的数学原理。
1. Poisson过程的定义与特性Poisson过程是一个连续时间随机过程,其特点是在一定时间内事件发生的数量满足泊松分布。
具体来说,Poisson过程满足以下几个条件:1)事件发生的间隔是独立的,即事件之间的时间间隔是随机的且相互独立。
2)事件发生的概率是相等的,即在单位时间内事件发生的概率是恒定的。
3)事件发生的次数满足泊松分布,即在给定时间内事件发生的次数服从参数为λ的泊松分布,其中λ是单位时间内事件发生的平均次数。
Poisson过程的重要特性包括:1)非负增量性质:即在给定时间内,事件发生的次数是非负的。
2)无记忆性质:即给定过去的事件信息,事件发生的概率与未来的事件无关。
3)稀疏性质:即在大部分时间段内,事件都不会发生。
2. Poisson过程的应用Poisson过程在实际应用中有着广泛的应用。
以下是几个常见的应用例子:2) 网络流量建模:在网络流量分析中,可以使用Poisson过程来描述网络中的数据包到达情况,进而进行网络拥塞控制和负载均衡。
3) 突发事件模拟:在灾难响应和紧急情况下的资源调度中,可以使用Poisson过程来模拟事件的发生情况,进而进行调度和分配。
4) 电子设备故障:在电子设备可靠性分析中,可以使用Poisson过程来建模设备故障的发生情况,进而进行设备寿命评估和维修策略制定。
3. Poisson过程的数学原理Poisson过程的数学原理基于泊松分布和指数分布的性质。
泊松过程的定义要求事件发生的间隔是独立的,而指数分布的性质恰好满足了这一要求。
具体来说,如果事件之间的时间间隔满足参数为λ的指数分布,那么事件发生的次数就会满足参数为λ的泊松分布。
Poisson过程的数学表示可以使用随机变量N(t)来表示在时间段[0,t]内事件发生的次数。
第三章 Poisson 过程教学目的:(1)了解计数过程的概念; (2)掌握泊松过程两种定义的等价性;(3)掌握泊松过程的到达时刻的分布、等待时间的分布和来到时刻的条件分布;(4)了解泊松过程的三种推广。
教学重点:(1)泊松过程两种定义的等价性;(2)泊松过程的到达时刻的分布、等待时间的分布和来到时刻的条件分布;(3)泊松过程的三种推广。
教学难点:(1)泊松过程两种定义的等价性的证明; (2)泊松过程来到时刻的条件分布; (3)泊松过程的推广。
3.1 Poisson 过程教学目的:掌握Poisson 过程的定义及等价定义;会进行Poisson 过程相关的概率的计算。
教学重点:Poisson 过程的定义与其等价定义等价性的证明;Poisson 过程相关的概率的计算。
教学难点:Poisson 过程的定义与其等价定义等价性的证明。
Poisson 过程是一类重要的计数过程,先给出计数过程的定义定义3.1:{(),0}N t t ≥随机过程称为计数过程,如果()0N t t 表示从到时刻 某一A 特定事件发生的次数,它具备以下两个特点: (1)()N t 取值为整数;(2)()()()-()(,]s t N s N t N t N s s t <≤时,且表示时间A 内事件发生的次数。
计数过程有着广泛的应用,如:某商店一段时间内购物的顾客数;某段时 间内电话转换台呼叫的次数;加油站一段时间内等候加油的人数等。
如果在不相交的时间区间中发生的事件个数是独立的,则称该计数过程有独立增量。
即当123,t t t <<2132()-()()-()X t X t X t X t 有与是独立的。
若在任一时间区间中的事件个数的分布只依赖于,时间区间的长度则计数 过程有平稳增量。
即对一切12120(,]t t s t s t s <>++及,在中事件个数 21()()N t s N t s +-+12(,]t t 与区间中事件的个数21()()N t N t -有相同的分布。
Poission 过程是计数过程,而且是一类最重要、应用广泛的计数过程,它最早于1837年由法国数学家Poission 引入。
.独立增量和平稳增量是某些级数过程的主要性质Poisson 过程是具有独立增量.和平稳增量的计数过程定义3.2:{(),0}(0)N t t λλ≥>计数过程称为参数为Poisson 过程,如果 (1)(0)0N =;(2)过程具有独立增量; (3),0,s t ≥对任意的(()-())P N t s N s n +=!ntt en λλ-=()例3.1:3/h 设顾客到达商店依次人的平均速度到达,Poisson 且服从分布, 9:00,已知商店上午开门试求(1)9:0010:005从到这一小时内最多有名顾客的概率?(2)9:3011:30到时仅到一位顾客,而到时总计已达到5位顾客的概率?(解:见板书。
)注:(1)Poisson 过程具有平稳增量。
(2)随机变量()N t 服从参数为t λ的Poisson 分布,故[()]E N t t λ=(显然,可以认为λ是单位时间内事件发生的平均次数,称λ是Poisson 过程的强度或速率或发生率。
)(3)0lim (()-()0)t P N t s N s +→+=0lim 1()tt e t o t λλ+-→==-+ 0lim (()-()1)t P N t s N s +→+=0lim ()t t te t o t λλλ+-→==+ 0lim (()-()2)()t P N t s N s o t +→+≥=(让同学们通过讨论来解释这几个极限结果的实际意义,适当引导学生结合实际并应用二项分布与Poisson 分布之间的关系来解释这3个极限。
),根据稀有事件原理在概率论中我们已经学到:,Bernoulli 试验中,每次试验成功的概率很小而,实验的次数很多时二项.Poisson 分布会逼近分布.这一现象也体现在随机过程中(0,]t 首先,将划分为 n 个相等的时间小区间,则由(4)'n →∞条件可知,当时,在每个小区间内事件220.→发生次或次以上的概率事件发生一次的概(),,tp h p nλλ≈⋅=率显然很小1这恰好是次.Bernoulli 试验1,,其中发生次为成功不发生的为失败再由(2)'给出 ,()N t n 的平稳增量就相当于次独立Bernoulli 试验中试验成功的总次数。
由()Poisson N t 分布的二项逼近可知,将服从t Poisson λ参数为的分布。
(让学生讨论如何判断一个计数过程是不是Poisson 过程,则必须验证是否满足(1)——(3),条件(1)说明计数过程从0开始,条件(2)通常可以从我么对过程的实际情况去直接验证,然而条件(3)一般完全不清楚,如何去判断?是否可以从我们所得到的Poisson 过程的这三条性质来判断定义中的条件(3)是否成立?接下来就证明计数过程满足Poisson 过程定义中的条件(1)和(2)及这里的性质的时候,该计数过程是一个Poisson 过程。
于是得到Poisson 过程的等价定义)定义3.2’: 一计数过程{(),0}N t t ≥λ称为参数为Poisson 的过程,若满足:(1)'(0)0N =;(2)'是独立增量及平稳增量过程,即任取120,n t t t n N <<<<∈,1211()(0),()(),,()()n n N t N N t N t N t N t ----相互独立;,0,0,{()()}{()}s t n P N s t N t n P N t n ∀>≥+-===且 (3)'0,0,t h >>对任意和充分小的有{()()1}()P N t h N t h h λο+-==+(4)'0,0,t h >>对任意和充分小的有{()()2}()P N t h N t h ο+-≥=定理3.1: 3.2 3.2'定义与定义是等价的。
证明: 3.2' 3.2⇒定义定义由增量平稳性,记:(){()}{()()}n P t P N t n P N s t N s n ===+-= (I )0n =情形:因为{()0}{()0,()()0},0N t h N t N t h N t h +===+-=>我们有:0(){()0,()()0}P t h P N t N t h N t +==+-=00={()0}{()()0}()()P N t P N t h N t P t P h =+-==另一方面0(){()()0}1(())P h P N t h N t h h λο=+-==-+代入上式,我们有:000()()()()P t h P t h P t h h ολ+-⎛⎫=-+ ⎪⎝⎭令0h →我们有:0000()()()(0){(0)0}1t P t P t P t e P P N λλ-'=-⎧⇒=⎨===⎩ (II )0n >情形:因为:{()}{(),()()0}N t h n N t n N t h N t +===+-={()1,()()1}N t n N t h N t =-+-=2{(),()()}n l N t n l N t h N t l =⎡⎤=-+-=⎢⎥⎣⎦故有:1()()(1())()(())()n n n P t h P t h h P t h h h λολοο-+=--+++化简并令0h →得:1()()()n n n P t P t P t λλ-'=-+两边同乘以t e λ,移项后有:1()()(0){(0)}0t tn n nd e P t e P t dt P P N n λλλ-⎧⎡⎤=⎪⎣⎦⎨⎪===⎩ 当1n =时,有:111(),(0)0()()t td e P t P P t t e dtλλλλ-⎡⎤==⇒=⎣⎦ 由归纳法可得:0()(),!n tn t P t e n N n λλ-=∈注意:{()}{()}E N t E N t t tλλ=⇒=,因此λ代表单位时间内事件A 出现的平均次数。
3.2 3.2'⇒定义定义{()()1}P N t h N t +-={()(0)1}P N h N =-=1()1!hh eλλ-= 0()!nn h h n λλ∞=-=∑(1())h h o h λλ=-+()h o h λ=+--------(3)'——成立。
{()()2}P N t h N t +-≥{()(0)2}P N h N =-≥2()!nhn h en λλ∞-==∑ 2()!n hn h en λλ∞-==∑0()[1]!n hn h e h n λλλ∞-==--∑[1]h h e e h λλλ-=-- 1h h e he λλλ--=--()h ο=---------------------------(4)'——成立。
例3.2:{()0},N t t Poisson λ≥设,服从强度为的过程求(1{(5)4};P N =)(2{(5)4,(7.5)6,(12)9};P N N N ===)(3{(2)9|(5)4}.P N N ==)例3.3:A Poisson λ事件的发生形成强度为的过程{(),0},N t t ≥如果每次事件P 发生时以概率能够被记()M t t 录下来,并以表示时刻记录下来的事件总数,则 {(),0}M t t P Poisson λ≥是一个强度为的过程。
例3.4:,某商场为调查顾客到来的客源情况考察了男女.顾客来商场的人数假设男女顾客到达商场的人数分12Poisson 别是独立服从每分钟人与每分钟人的过程。
(1)到达商场顾客的总人数应该服从什么分布?(2)50,30t 已知时刻已有人到达的条件下问其中有位是女性顾客的概率有多大?平均有多少女性顾客?作业1:Poisson 设通过某十字路口的车流可以看做过程,1如果分钟内没有车 0.2.辆通过的概率为121()求分钟内有多于辆车通过的概率。
(2)5在分钟内平均通过的车辆数。
35()在分钟内平均通过的车辆数方差。
45()在分钟内至少有一辆车通过的概率。
3.2 Poisson 过程相联系的若干分布教学目的:掌握n X 和n T 的分布;理解事件发生时刻的条件分布。
教学重点:n X ,n T 的分布;事件发生时刻的条件分布。
教学难点:事件发生时刻的条件分布。
{(),0}Poisson N t t ≥过程的一条样本路径一般是1跳跃度为的阶梯型函数。