应用随机过程3-泊松过程
- 格式:pdf
- 大小:150.17 KB
- 文档页数:22
第3章测验题解答一、填空题1.设}0),({≥t t X 是参数为λ>0的泊松过程对任意的),0[,+∞∈s t ,且t s <,则均值函数为__t λ____;相关函数为__s st λλ+2______。
答案:均值函数为:t X t X E t X E t m X λ=-==)]0()([)]([)(相关函数为:)]}()()()[({)]()([),(s X s X t X s X E t X s X E t s R X +-== 2)]([)]()()][0()([s X E s X t X X s X E +--=2)]}([{)]([)]()([)]0()([s X E s X D s X t X E X s X E ++--=2)()(s s s t s λλλλ++-=)1(2+=+=t s s st λλλλ2. 设}0),({≥t t X 是具有参数λ的泊松过程,}1,{≥n T n 是对应的时间间隔序列,则随机变量,...)2,1(=n T n 独立同分布服从___________。
答案:均值为λ/1的指数分布3.设}0,{≥n W n 是与泊松过程}0),({≥t t X 对应的一个等待时间序列,则n W 服从________,概率密度为______________。
答案:参数为n 与λ的Γ分布)!1(1)(0{)(---=n n t t en W t f λλλ<≥t t4.泊松过程的定义:称计数过程(){},0t ≥X t 为具有参数0λ>的泊松过程,若它满足下列条件:()100;X =();()(2)X t 是独立、平稳增量过程; ()(3)X t 满足下列两式:)(}1)()({h t t X h t X P ολ+==-+)(}2)()({h t X h t X P ο=≥-+5 .设}0),({≥t t X 是参数为λ>0的泊松过程对任意的),0[,+∞∈s t ,且t s <,方差函数为______;协方差函数为__________。
随机过程的分支过程和泊松过程随机过程,指的是随时间而变化的一系列随机事件的集合。
随机过程的数学模型可以用随机变量的集合来描述。
其中,分支过程(branching process)和泊松过程(Poisson process)是随机过程中比较经典并且应用广泛的两种模型。
一、分支过程分支过程最早出现在爱尔兰数学家戈尔登的研究中。
他在研究人口增长的过程中发现,如果假设每个人在他的有生之年内可以产生若干个子女,那么就可以把人口增长的过程看作是一个分支过程。
分支过程是一类离散时间的随机过程,可以描述由一个个独立的、概率相同的“父代”产生的“子代”数目的随机变化过程。
具体来说,在分支过程中,每个父代独立地产生一个随机整数,表示它将会产生的子代数目。
每个子代的产生也是独立的,并且都遵循与父代相同的分布。
这个过程一直持续下去,一直到所有的后代都无法再产生新的子代为止。
对于一个分支过程,我们可以定义一个生成函数G(x),表示从一个父代生成的所有子代的数目的概率分布。
对于一个父代可以生成k个后代的概率为pk,则G(x)可以表示为:G(x) = p0 + p1x + p2x2 + ... + pnxn其中,pn表示最后一代后代数目为n的概率。
我们可以根据这个生成函数来计算分支过程的很多性质,如在每个时刻,所有后代的数目的期望、方差和协方差等等。
二、泊松过程泊松过程是一个连续时间的随机过程,它具有无记忆性(memorylessness)和独立增量(independent increments)的性质,这使得它成为了极其重要的一种数学模型。
在泊松过程中,事件发生的时间无规律,但是平均每单位时间内事件发生的次数是固定的。
具体来说,对于一个泊松过程,我们定义一个速率参数λ,表示在单位时间内事件发生的平均次数。
我们假设事件是独立发生的,并且事件发生的时间间隔服从指数分布。
这样,我们就可以用泊松分布来描述在任意时间段内事件发生的次数。
随机过程第三章泊松过程泊松过程是随机过程中的一类重要过程,在许多领域都有广泛应用,如排队论、可靠性分析、金融工程等。
泊松过程的概念由法国数学家泊松提出,它具有无记忆性、独立增量和平稳增量等重要特征。
在本文中,我们将介绍泊松过程的定义、性质以及一些实际应用。
泊松过程的定义:设N(t)是在区间[0,t]内发生的事件个数,若满足以下三个条件,则称N(t)是具有独立增量和平稳增量的泊松过程:1.N(0)=0,表示在时间0之前没有事件发生;2.对于任意的s<t,N(t)-N(s)的分布只与时间间隔t-s有关,与s时刻之前的事件个数无关,这表明泊松过程具有无记忆性;3.对于任意的s<t,N(t)-N(s)的分布是一个参数为λ(t-s)的泊松分布,其中λ是过程的强度参数。
泊松过程具有很多重要的性质。
首先,泊松过程的均值和方差等于其强度参数λ。
其次,泊松过程的增量独立,即在非重叠区间上的增量相互独立。
此外,泊松过程的时间间隔也是独立同分布的指数分布。
泊松过程具有广泛的应用。
在排队论中,泊松过程可用于描述到达队列的顾客数量。
在可靠性分析领域,泊松过程可用于描述设备的故障次数。
在金融工程中,泊松过程可用于模拟股票价格的变动和交易的发生。
在实际应用中,对于给定的泊松过程,我们通常感兴趣的是估计其强度参数λ。
常用的估计方法有最大似然估计和矩估计。
最大似然估计通过最大化观测到的事件发生次数和估计的事件发生率之间的似然函数,来估计λ的值。
矩估计则是通过将观测到的事件个数的平均值等于λ的估计值,来确定λ的值。
此外,在泊松过程的应用中,我们还可能遇到泊松过程的两个重要扩展:非齐次泊松过程和二维泊松过程。
非齐次泊松过程是指强度参数λ是时间的一个函数,而不是常数。
二维泊松过程是指同时考虑两个独立的泊松过程,其事件发生次数可能影响到对方的发生次数。
综上所述,泊松过程是一种重要的随机过程,具有无记忆性、独立增量和平稳增量等特征。