第三章泊松(Poisson)过程.
- 格式:ppt
- 大小:1.55 MB
- 文档页数:23
随机过程第三章泊松过程泊松过程是随机过程中的一类重要过程,在许多领域都有广泛应用,如排队论、可靠性分析、金融工程等。
泊松过程的概念由法国数学家泊松提出,它具有无记忆性、独立增量和平稳增量等重要特征。
在本文中,我们将介绍泊松过程的定义、性质以及一些实际应用。
泊松过程的定义:设N(t)是在区间[0,t]内发生的事件个数,若满足以下三个条件,则称N(t)是具有独立增量和平稳增量的泊松过程:1.N(0)=0,表示在时间0之前没有事件发生;2.对于任意的s<t,N(t)-N(s)的分布只与时间间隔t-s有关,与s时刻之前的事件个数无关,这表明泊松过程具有无记忆性;3.对于任意的s<t,N(t)-N(s)的分布是一个参数为λ(t-s)的泊松分布,其中λ是过程的强度参数。
泊松过程具有很多重要的性质。
首先,泊松过程的均值和方差等于其强度参数λ。
其次,泊松过程的增量独立,即在非重叠区间上的增量相互独立。
此外,泊松过程的时间间隔也是独立同分布的指数分布。
泊松过程具有广泛的应用。
在排队论中,泊松过程可用于描述到达队列的顾客数量。
在可靠性分析领域,泊松过程可用于描述设备的故障次数。
在金融工程中,泊松过程可用于模拟股票价格的变动和交易的发生。
在实际应用中,对于给定的泊松过程,我们通常感兴趣的是估计其强度参数λ。
常用的估计方法有最大似然估计和矩估计。
最大似然估计通过最大化观测到的事件发生次数和估计的事件发生率之间的似然函数,来估计λ的值。
矩估计则是通过将观测到的事件个数的平均值等于λ的估计值,来确定λ的值。
此外,在泊松过程的应用中,我们还可能遇到泊松过程的两个重要扩展:非齐次泊松过程和二维泊松过程。
非齐次泊松过程是指强度参数λ是时间的一个函数,而不是常数。
二维泊松过程是指同时考虑两个独立的泊松过程,其事件发生次数可能影响到对方的发生次数。
综上所述,泊松过程是一种重要的随机过程,具有无记忆性、独立增量和平稳增量等特征。
一.假定某天文台观察到的流星流是一个泊松过程, 据以往资料统计为每小时平均观察到 3 颗流星.试求:( 1 ) 在上午 8 点到 12 点期间, 该天文台没有观察到流星的概率 .( 2 ) 下午( 12 点以后)该天文台观察到第一颗流星的时间的分布函数 .二.设电话总机在]X是具有强度,0(t内接到电话呼叫数)(tλ的泊松过程,求(每分钟)2=(1)两分钟内接到2次呼叫的概率;(2)“第二分钟内收到第2次呼叫”的概率。
12维纳过程如果它满足给定实随机过程,}0),({≥t t W ;)2(是平稳的独立增量过程;0)),(,0()()( ,0 )3(2>−−≥>σσ且~增量对任意的s t N s W t W s t .0)0()1(=W 则称此过程为维纳过程.33. 维纳过程的特征).,min(),(),(2t s t s R t s B W W σ==;0),,0()( 2>σσ且~t N t W ).,min()]()()(()([(2a t a s a W s W a W s W E −−=−−σ,,0+∞<<≤∀t s a (1)(2))]()())(()([(a W t W a W s W E −−,t s <令))]()()()())(()([(a W s W s W t W a W s W E −+−−=))]()())(()([(s W t W a W s W E −−=))]()())(()([(a W s W a W s W E −−+).(2a s −=σ4五.平稳过程定义2.12,,,,,21T t t t N n n ∈∈L ))(,),(),((21n t X t X t X n L 变量维随机))(,),(),((21h t X h t X h t X n +++L 和具有相同的分布函数, 则称随机过程}),({T t t X ∈具有平稳性, 并同时称此过程为严平稳随机过程,(或狭义平稳过程).与常数若对为随机过程设τ∀∈,}),({T t t X ,,,,21时当T t t t n ∈+++τττL 严平稳过程的任意有限维概率分布不随时间的推移而改变.5,}),({是严平稳过程若T t t X ∈,时间无关则它的一维概率分布与它的二维概率分布, 21的时间间隔有关只与 t .与时间起点无关6{}.,),(,,,);()]()([),(,,)2( );()]([)(,)1( ,),( 简称为平稳过程平稳过程广义或弱为宽则称的取值无关而与的大小有关即其相关函数仅与对关的常数无与对如果是二阶矩过程设X t s s t s t R t X s X E t s R T t s t const m t X E t m T t T t t X X X X X X −−==∈∀===∈∀∈=.}),({,为平稳序列则称平稳过程为离散集若T t t X T ∈13.2定义7试讨论它的平稳性相位周期过程为随机称定义变量上均匀分布的随机是服从区间的连续函数是一个周期为设随机相位周期过程例.)(),,(),()(.],0[,)()( t X t t s t X T T t s +∞−∞∈Φ+=Φ解φφφΦΦd )()()]([)]([)(∫∞∞−+=+==p t s t s E t X E t m X u u s T u u s T t s T T T t t T ∫∫∫==+=+00d )(1d )(1d )(1φφ,)(无关的常数是一个与t t m X8[])()(),(ττ+=+t X t X E t t R X [])()(Φ++Φ+=τt s t s E φφφτd p t s t s )()()(Φ∞∞∫++Φ+=φφτφ∫+++=T t s t s T 0d )()(1u u s u s T T t t∫++=d )()(1τu u s u s T T ∫+=0d )()(1τ,有关其值仅与τ.是一平稳过程因而随机相位周期过程9tc c 且对任意的给出由不同的电流符号信号是在电报信号传输中随机电报信号例,,,)( −⎥⎥⎦⎤⎢⎢⎣⎡−2121~)(c c t X {}的平稳性试讨论过程为为是强度内的变号次数在设的时间是随机的电流变换符号任意的持续时间而电流的发送又有一个0),(,)(],0[)(,,≥t t X Poisson t N t t X λ:解0,0)(2121)]([()(≥=−+==t c c t X E t m X10:解)]()([),(ττ+=+t X t X E t t R X {}{}2222)()()()()(c t X t X P c c t X t X P c −=+−+=+=ττ{}{}为奇数为偶数)()()(22ττN P c N P c −+=0,0)(2121)]([()(≥=−+==t c c t X E t m X τλτλτλτλ−∞=+−∞=∑∑+−=e k c e k c k k k k 0122022)!12()()!2()(,),(无关与t t t R X τ+{}是平稳过程随机电报信号0),(≥∴t t X ,e !)(e 220-2τλτλτλ−∞==−=∑c k c k k ⎥⎥⎦⎤⎢⎢⎣⎡−2121~)(c c t X11,),(无关与t t t R X τ+{}是平稳过程随机电报信号0),(≥∴t t X 关于平稳过程更详细的讨论在第六章τλτλτλτλ−∞=+−∞=∑∑+−=ek c e k c k k k k 0122022)!12()()!2()(,e !)(e 220-2τλτλτλ−∞==−=∑c k c k k ⎥⎥⎦⎤⎢⎢⎣⎡−2121~)(c c t X第三章泊松过程§3.1 泊松过程的的定义和例子1.问题的提出下列事件随时间的推移迟早会重复出现.(1) 自电子管阴极发射的电子到达阳极;(2) 机器零件发生故障;(3) 要求服务的顾客到达服务站.12132. 问题的分析与求解将电子、顾客等看作时间轴上的质点,电子到达阳极、顾客到达服务站等事件的发生相当于质点出现.因此研究的对象可以认为是随时间推移,陆续地出现在时间轴上的许多质点所构成的随机的质点流..,],0(0,)(出现的质点数时间轴上内表示在时间间隔 用t t t N ≥.,}0),({称为 续的随机过程、时间连是一个状态取非负整数 ≥t t N 计数过程计数过程的一个典型样本函数1415定义 3.1 称随机过程{}0),(≥t t N 为计数过程;若)(t N 表示到时刻t 为止已发生的A 事件"的总数,且)(t N 满足下列条件:(1)()0≥t N(2)()t N 取正整数(3)若则,t s <)()(t N s N ≤;(4)当t s <时,)()(s N t N −等于区间],(t s 中""A 事件发生的次数。
第三章 Poisson 过程教学目的:(1)了解计数过程的概念; (2)掌握泊松过程两种定义的等价性;(3)掌握泊松过程的到达时刻的分布、等待时间的分布和来到时刻的条件分布;(4)了解泊松过程的三种推广。
教学重点:(1)泊松过程两种定义的等价性;(2)泊松过程的到达时刻的分布、等待时间的分布和来到时刻的条件分布;(3)泊松过程的三种推广。
教学难点:(1)泊松过程两种定义的等价性的证明; (2)泊松过程来到时刻的条件分布; (3)泊松过程的推广。
3.1 Poisson 过程教学目的:掌握Poisson 过程的定义及等价定义;会进行Poisson 过程相关的概率的计算。
教学重点:Poisson 过程的定义与其等价定义等价性的证明;Poisson 过程相关的概率的计算。
教学难点:Poisson 过程的定义与其等价定义等价性的证明。
Poisson 过程是一类重要的计数过程,先给出计数过程的定义定义3.1:{(),0}N t t ≥随机过程称为计数过程,如果()0N t t 表示从到时刻 某一A 特定事件发生的次数,它具备以下两个特点: (1)()N t 取值为整数;(2)()()()-()(,]s t N s N t N t N s s t <≤时,且表示时间A 内事件发生的次数。
计数过程有着广泛的应用,如:某商店一段时间内购物的顾客数;某段时 间内电话转换台呼叫的次数;加油站一段时间内等候加油的人数等。
如果在不相交的时间区间中发生的事件个数是独立的,则称该计数过程有独立增量。
即当123,t t t <<2132()-()()-()X t X t X t X t 有与是独立的。
若在任一时间区间中的事件个数的分布只依赖于,时间区间的长度则计数 过程有平稳增量。
即对一切12120(,]t t s t s t s <>++及,在中事件个数 21()()N t s N t s +-+12(,]t t 与区间中事件的个数21()()N t N t -有相同的分布。