第五节 泊松过程
- 格式:ppt
- 大小:171.00 KB
- 文档页数:17
泊松过程一种累计随机事件发生次数的最基本的独立增量过程。
例如随着时间增长累计某电话交换台收到的呼唤次数,就构成一个泊松过程。
泊松过程是由法国著名数学家泊松(Poisson, Simeon-Denis)(1781—1840)证明的。
1943年C.帕尔姆在电话业务问题的研究中运用了这一过程,后来Α.Я.辛钦于50年代在服务系统的研究中又进一步发展了它。
Poisson过程(Poisson process,大陆译泊松过程、普阿松过程等,台译卜瓦松过程、布瓦松过程、布阿松过程、波以松过程、卜氏过程等),是以法国数学家泊松(1781 - 1840)的名字命名的。
泊松过程是随机过程的一种,是以事件的发生时间来定义的。
我们说一个随机过程N(t) 是一个时间齐次的一维泊松过程,如果它满足以下条件:在两个互斥(不重叠)的区间内所发生的事件的数目是互相独立的随机变量。
在区间内发生的事件的数目的概率分布为:其中λ是一个正数,是固定的参数,通常称为抵达率(arrival rate)或强度(intensity)。
所以,如果给定在时间区间之中事件发生的数目,则随机变数呈现泊松分布,其参数为。
更一般地来说,一个泊松过程是在每个有界的时间区间或在某个空间(例如:一个欧几里得平面或三维的欧几里得空间)中的每一个有界的区域,赋予一个随机的事件数,使得•在一个时间区间或空间区域内的事件数,和另一个互斥(不重叠)的时间区间或空间区域内的事件数,这两个随机变数是独立的。
•在每一个时间区间或空间区域内的事件数是一个随机变数,遵循泊松分布。
(技术上而言,更精确地来说,每一个具有有限测度的集合,都被赋予一个泊松分布的随机变数。
)泊松过程是莱维过程(Lévy process)中最有名的过程之一。
时间齐次的泊松过程也是时间齐次的连续时间Markov过程的例子。
一个时间齐次、一维的泊松过程是一个纯出生过程,是一个出生-死亡过程的最简单例子。
泊松过程公式范文泊松过程(Poisson process)是概率论中的一种重要的随机过程。
它以数学家西莫恩·庞加莱(Siméon Denis Poisson)的名字命名,他在19世纪早期首次引入了这个概念。
泊松过程是一种离散时间(时间按照一定的间隔划分)连续状态(可以不断地发生事件)的随机过程。
泊松过程的定义是:在一段时间内,事件发生的次数服从泊松分布(Poisson distribution)。
这段时间可以是无穷小的时间间隔,也可以是有限的时间窗口。
泊松过程的关键特征是事件之间的时间间隔都是独立的且呈指数分布。
所谓指数分布是指事件之间的时间间隔满足指数分布的概率密度函数,即事件发生的概率与时间间隔的长度成正比。
泊松过程的数学定义可以表示为:P(N(t)=k)=(e^(-λt)*(λt)^k)/k!其中,N(t)表示在时间t内发生的事件次数,k表示事件的个数,λ表示单位时间内平均发生的事件个数。
根据泊松过程的定义,可以得到一些重要的性质和公式。
首先是事件发生的概率。
在时间t内发生k次事件的概率可以用公式P(N(t)=k)表示,其中λt表示单位时间内平均发生的事件个数。
这个公式是泊松分布的概率质量函数。
其次是事件之间的时间间隔。
由于泊松过程中时间间隔是独立的且呈指数分布,所以事件发生的时间间隔满足无记忆性(memoryless)的特性。
无记忆性意味着事件的发生与之前的事件的发生时间无关,只与发生事件的频率有关。
再次是事件的到达间隔。
事件的到达间隔是指两个连续事件之间的时间间隔。
根据泊松过程的定义,事件的到达间隔呈指数分布。
事件的到达间隔的期望值(也称为平均间隔)为1/λ,即单位事件到达的平均时间间隔。
最后是超过特定事件个数的概率。
假设我们需要计算在一定时间内超过n次事件发生的概率。
可以用公式P(N(t) > n) = 1 - P(N(t) <= n)= 1 - ∑(i=0 to n) (e^(-λt) * (λt)^i) / i!来计算。
一个基本的独立增量过程,用于累积随机事件的发生时间。
例如,随着时间的推移累积电话交换机接收的呼叫数量就构成了泊松过程。
法国著名数学家泊松(1781-1840)证明了泊松过程。
1943年,C。
Pahlm将这一过程应用到电话服务的研究中,后来又应用于α。
я。
1950年代,辛勤在服务系统研究中进一步发展了它。
法国数学家Poisson于1781年6月21日出生于法国卢瓦尔河,于1840年4月25日去世,死于法国苏富比镇。
1798年,他进入巴黎综合科学与工程学院深造。
毕业后,他以出色的研究论文被任命为讲师。
由p.-s赞赏。
拉普拉斯和j.l.拉格朗日。
1800年毕业后,他留校任教,1802年成为副教授,并接替了J.-B.-J.傅里叶于1806年担任教授。
1808年,他是法国经度局的天文学家,1809年,他是巴黎科学研究所的力学教授。
1812年,他当选为巴黎科学院院士。
泊松的科学生涯始于对微分方程的研究及其在摆运动和声学理论中的应用。
他的工作特征是运用数学方法研究各种机械和物理问题,并获得数学发现。
他为积分理论,行星运动理论,热物理学,弹性理论,电磁理论,势能理论和概率论做出了重要贡献。
对于泊松过程,通常认为每个样本函数都是一个左跳(或右跳)连续阶跃函数,其跳跃为1。
可以证明具有此属性的样本函数的随机连续独立增量过程必须是泊松过程,因此,泊松过程是描述随机事件累积发生时间的基本数学模型之一。
凭直觉,只要随机事件在不相交的时间间隔内独立发生并且在足够小的间隔内仅发生一次,则它们的累积时间就是一个泊松过程。
这些条件在许多应用中都可以满足。
例如,某个系统在时间段[0,t]中的故障数和在真空管加热t秒钟后阴极发射的电子总数可以被认为是泊松过程。
描述随机事件的累积发生时间的过程通常称为计数过程(请参阅点过程)。
还可以通过依次跳转的时间{Tn,n≥1}定义简单的局部计数过程{X(t),t≥0},即T0 = 0,Tn = inf {t:X(t)≥n},n≥1,并且当TN <t时,如果X(t)表示为两个相邻跳转之间的时间间隔,则当且仅当{τn,n≥1}是独立且均匀分布的,并且λ是非负常数。
泊松过程
泊松过程是由法国著名数学家泊松(Poisson, Simeon-Denis)(1781—1840)证明的。
1943年C.帕尔姆在电话业务问题的研究中运用了这一过程,后来辛钦于50年代在服务系统的研究中又进一步发展了它。
它是一种累计随机事件发生次数的最基本的独立增量过程。
例如随着时间增长累计某电话交换台收到的呼唤次数的过程。
一般地来说,一个泊松过程是在每个有界的时间区间或在某个空间(例如:一个欧几里得平面或三维的欧几里得空间)中的每一个有界的区域,赋予一个随机的事件数,使得在一个时间区间或空间区域内的事件数,和另一个互斥(不重叠)的时间区间或空间区域内的事件数,这两个随机变数是独立的。
在每一个时间区间或空间区域内的事件数是一个随机变数,遵循泊松分布。
(技术上而言,更精确地来说,每一个具有有限测度的集合,都被赋予一个泊松分布的随机变数。
)泊松过程是莱维过程(Lévy pro cess)中最有名的过程之一。
时间齐次的泊松过程也是时间齐次的连续时间Markov过程的例子。
一个时间齐次、一维的泊松过程是一个纯出生过程,是一个出生——死亡过程的最简单例子。
对泊松过程,通常可取它的每个样本函数都是跃度为1的左(或右)连续阶梯函数。
可以证明,样本函数具有这一性质的、随机连续的独立增量过程必是泊松过程,因而泊松过程是描写随机事件累计发生次数的基本数学模型之一。
直观上,只要随机事件在不相交时间区间是独立发生的,而且在充分小的区间上最多只发生一次,它们的累
计次数就是一个泊松过程。
泊松过程泊松过程是指一种累计随机事件发生次数的最基本的独立增量过程。
例如随着时间增长累计某电话交换台收到的呼唤次数,就构成一个泊松过程。
泊松过程是由法国著名数学家泊松(1781—1840)证明的。
1943年C.帕尔姆在电话业务问题的研究中运用了这一过程,后来Α.Я.辛钦于50年代在服务系统的研究中又进一步发展了它。
泊松过程是随机过程的一种,是以事件的发生时间来定义的。
我们说一个 随机过程 N(t)是一个时间齐次的一维泊松过程,如果它满足以下条件:在两个互斥(不重迭)的区间内所发生的事件的数目是互相独立的随机变量。
在区间[t,t + τ]内发生的事件的数目标机率分布为:其中λ是一个正数,是固定的参数,通常称为抵达率(arrival rate)或强度(intensity)。
所以,如果给定在时间区间[t,t + τ]之中事件发生的数目,则随机变量N(t + τ) - N(t)呈现泊松分布,其参数为λτ。
更一般地来说,一个泊松过程是在每个有界的时间区间或在某个空间(例如:一个欧几里得平面或三维的欧几里得空间)中的每一个有界的区域,赋予一个随机的事件数,使得在一个时间区间或空间区域内的事件数,和另一个互斥(不重迭)的时间区间或空间区域内的事件数,这两个随机变量是独立的。
在每一个时间区间或空间区域内的事件数是一个随机变量,遵循泊松分布。
(技术上而言,更精确地来说,每一个具有有限测度的集合,都被赋予一个泊松分布的随机变量。
) 考虑一个泊松过程,我们将第一个事件到达的时间记为T1。
此外,对于n>1,以Tn记在第n-1个事件与第n个事件之间用去的时间。
序列{Tn,n=1,2,...}称为到达间隔时间列。
Tn(n=1,2,...)是独立同分布的指数随机变量,具有均值1/λ。
Definition of the Poisson processWe describe the situation by the counting process N(t), t > 0, which counts the number of events that have occurred between time 0 and time t. Our model has a single parameter, λ > 0, which isthe average arrival rate per unit time. Before defining the model formally, we make some preliminary calculations based on the following three natural assumptions:• The probability of an event occurring in a short interval of time [t,t+h] is λh+o(h) as h → 0.• The probability of two or more events occurring in interval [t, t + h] is o(h) as h → 0.• The numbers of events occurring in disjoint time intervals are independent.Examples:1.Insurance claims. Insurance companies often model customers’ claims using renewalideas. In this case the interarrival distribution is a crucial element of the calculation ofwhat insurance premium to charge.2.Counter processes. Many devices can be described as counters in that they attempt torecord the occurrence of successive signal pulses impinging on some instrument. Forexample Geiger counters for recording ionization events, or scintillation counters forrecording passage of a subatomic particle.3.Traffic flow. The times at which successive cars pass a monitoring station on a longsingle- lane road can be modelled as a renewal process. Much more generally, any sort of “traffic” can fit a similar model, such as data packets arriving at a server across a network connection. Questions of congestion can be answered using renewal theory and therelated theory of queues.4.Inventory systems. A large department store needs to know how much stock of aparticular item to hold, and a schedule for replenishment. The pattern of demands canoften be modelled as a renewal process.In any of these or other similar situations in which events occur randomly in time at some uniform average rate, an assumption of ‘total randomness’ leads to the Poisson process as a model.。
泊松过程
泊松过程可以用数学语言来表达。
满足以下三个条件的随机过程X = {X(t),t ≥0}被称为泊松过程。
在基础书中,泊松过程是及时定义的过程。
①P(X(0)= 0)= 1。
②不相交区间的增量是相互独立的,即对于0≤t1<t2 <... <tn,X(t1),X(t2)-X(t1),...,X(tn)-X(tn-1)独立。
③增量X (t)-X(s)(t> s)的概率分布为泊松分布,即Λ(t)为非递减非负函数。
如果X仍然满足④X(t)-X(s)的分布仅取决于ts,则X被称为齐次泊松过程;那么Λ(t)=λt,其中常数λ> 0称为过程强度,因为EX(t)=Λ(t)=λt,所以λ等于每单位时间的平均事件数。
通过时间尺度的转换,非均匀泊松过程可以转化为均匀泊松过程。
对于泊松过程,通常它的每个样本函数都是一个左跳(或右跳)连续阶跃函数,跳跃为1。
可以证明具有样本函数此属性的随机连续独立增量过程必须是泊松过程。
因此,泊松过程是描述随机事件累积发生的基本数学模型之一。
凭直觉,只要随机事件在不相交的时间间隔内独立发生,并且仅在足够小的间隔内发生一次,它们的累积数就是一个泊松过程。
在许多应用中,这些条件都可以满足。
例如,可以将某个系统在周期[0,t)内的故障数量以及加热t 秒钟后真空管的阴极发射的电子总数视为泊松过程。