行程问题中的比例
- 格式:doc
- 大小:55.50 KB
- 文档页数:2
比和比例在行程问题中的应用一、知识导学路程一定,速度和时间成;时间一定,路程和速度成;速度一定,路程克时间成。
例:①甲、乙两车相向而行,相遇时甲、乙路程比为5:4 ,则甲、乙两车的速度比为;两车分别从A、B两地相向开出,相遇时,甲比乙多行驶10 千米,则A、B 两地的距离为千米;②从A地到B地,甲需5 小时,乙需4 小时,则甲、乙的速度比为;从C地到D地,若两车同时出发,则甲比乙晚 3 个小时到D地,那么甲行完全程需小时,乙行完全程需小时;③甲车从A地开到B地需 5 小时,从B地开到C地需4 小时,则A到B之间的距离与B到C之间的距离之比为。
④在环形跑道上,甲、乙两人的速度之比为5:4 。
若两人同时同向出发,10 分钟后,两人第一次相遇时,此时甲比乙多走400 米,则这个环形跑道的周长为,甲的速度为,乙的速度为。
二、典例剖析例1:1、从东城到西城,甲需要20小时,乙需要15 小时,乙的速度比甲的速度快百分之几?2、甲、乙两人分别从A、B两地出发,相向而行。
相遇时,甲、乙的路程比是5:3 。
若甲行完全程要 2 小时,那么乙行完全程要几小时?变式:1、甲、乙两人步行速度之比是3:2 ,甲、乙分别从A、B 两地同时出发,若相向而行,则 1 小时后相遇。
若同向而行,甲要花多少时间才能追上乙?2、甲、乙两车分别同时从A、B两地相向开出,速度比是7:11 。
两车第一次相遇后继续按10原方向前进,各自到达终点后立即返回,第二次相遇时甲车离 多少千米?3、小王和小李骑摩托车分别从 A 、B 两城同时相对开出, 经过 4 小时相遇, 相遇后各自继续前进,又经过 3小时,小王到达 B 地,小李离 A 地还有 50千米。
A 、B 两地相距多少千米?4、一辆货车每小时行 70 千米,相当于客车速度的 7 。
现两车同时从甲、 乙两地相对开出,8结果在距中点 50 千米处相遇。
甲、乙两地相距多少千米?15、客车、货车同时从 A 地、B 地相对开出, 客车每小时行 60 千米,货车每小时行全程的 ,B 地 80 千米。
行程问题2.1丨比例关系1(秒杀思维,收藏好文)比例关系S=VT,S表示路程,V表示速度,T表示时间。
当S固定时,V与T成反比例;当V固定时,S与T成正比例;当T固定时,S与V成正比例;2006年江苏B79.某人骑自行车从甲地到乙地,用20分钟行完全程的40%。
然后每分钟比原来多行60米,15分钟的行程和前面的行程一样。
甲、乙两地相距多少千米?A.12B.10.8C.10D.9【解析】D。
20V=15(V+60),得知V=180,故而20分钟行走3.6千米,占总路程40%故而总路程为9。
2006年广东9.甲、乙、丙三人,甲每分钟走50 米,乙每分钟走40 米,丙每分钟走35 米,甲、乙从A 地,丙从B地同时出发,相向而行,丙遇到甲2 分钟后遇到乙,那么,A、B 两地相距多少米?( )A.250 米B.500 米C.750 米D.1275 米【解析】D。
多种解题思路。
(1)比例法:甲丙和为:85,乙丙和为:75. 两者的相遇时间之比为:75:85差量为10,现在10为2分钟,得知:时间分别为:15,17.因此为:85×15(2)整除思维:假设甲丙相遇时间为T,则有:S=(50+35)T=(40+35)(T+2)得知路程为85及75倍数,结合选项,得知仅D选项符合。
(3)方程思维:同上,T=15,S=1275。
2008年浙江卷20.甲、乙两人沿直线从A地步行至B地,丙从B地步行至A地。
已知甲、乙、丙三个同时出发,甲和丙相遇后5分钟,乙与丙相遇。
如果甲、乙、丙三人的速度分别为85米/分钟、75米/分钟、65米/分钟。
问AB两地距离为多少米?A.8000米B.8500米C.10000米D.10500米【解析】D。
两种思维方式:(1)甲丙先相遇,乙丙后相遇,设甲丙相遇X分钟,则乙丙相遇X+5分钟;得知:最简单的方程:150X=140(X+5)得知X=70。
因此总路程10500。
(2)150X是15的倍数。
比例行程【例题1】萱萱去姥姥家,途中要经过上坡、平路和下坡各一段,路程比为1:2:1,已知萱萱走三种路段上行走的速度比为3:4:6,且在平路上行走的时间是25分钟,那么萱萱去姥姥家一共花了多长时间?【例题2】有甲、乙、丙三辆汽车,各以一定的速度从某地出发同向而行.乙比丙晚出发10分钟,出发后40分钟追上丙;甲比乙晚出发20分钟,出发后1小时40分钟追上丙.请问:甲出发多少分钟后才能追上乙?【例题3】小明从家到学校,先用每分钟走50米的速度走了两分钟,然后他发现如果继续这么走下去,他会迟到8分钟,于是,他立刻改用60米每分的速度行走,反而提前了5分钟到学校,那么,学校到家的路程是多少?【例题4】一辆轿车和一辆巴士都从A 地到B 地,巴士速度是轿车速度的54.巴士要在两地的中点停10分钟,轿车中途不停车,轿车比巴士在A 地晚出发11分钟,早7分钟到达B 地.如果巴士是10点出发的,那么轿车超过巴士时是10点多少分?【例题5】欢欢和贝贝是同班同学,并且住在同一栋楼里.早晨 7 : 40 ,欢欢从家出发骑车去学校,7 : 46追上了一直匀速步行的贝贝;看到身穿校服的贝贝才想起学校的通知,欢欢立即调头,并将速度提高到原来的 2倍,回家换好校服,再赶往学校;欢欢 8 : 00赶到学校时,贝贝也恰好到学校.如果欢欢在家换校服用去 6分钟且调头时间不计,那么贝贝从家里出发时是几点几分.【例题6】一支解放军部队从驻地乘车赶往某地抗洪抢险,如果行驶1小时后,将车速提高五分之一,就可以比预定时间提前20分钟赶到,如果先按原速行驶72千米,再将车速提高三分之一,就可比预定时间提前30分钟赶到,问:这支解放军部队一共需要行驶多少千米?【例题7】甲、乙两人分别从A B、两地同时出发,相向而行。
出发时他们的速度之比是3:2,相遇后,甲的速度提高20%,乙的速度提高13,这样当甲到达B地时,乙离A地还有41千米,那么A B、两地相遇__________千米。
行程问题之比例的应用【知识点总结】当速度一定时,时间和路程成正比例关系当时间一定时,速度和路程成正比例关系当路程一定时,时间和速度成反比例关系【例题讲解】例1一列客车和一列货车同时从甲乙两地同时相向而行,客车与货车的速度比是11∶8,甲乙两地相距380千米。
求相遇时,客车比货车多行了多少千米?解答:在时间相同时,速度与路程成正比例V客:V货=11:8S客:S货=11:8按比例分配:380÷(11+8)=20(千米)客车比火车多行的路程:20×(11-8)=60(千米)举一反三1、小军和小明同时从A、B两地相向而行,A、B两地相距600米,小军和小明的速度比是3∶2,相遇时,小明走了多少米?解答:在时间相同时,速度与路程成正比例V军:V明=3:2S军:S明=3:2按比例分配:600÷(3+2)=120(千米)小明走的路程:120×2=240(千米)2、哥哥和弟弟同时从家和学校相向而行,哥哥和弟弟的速度比是5∶3,相遇时哥哥比弟弟多走了200米,求家离学校有多少米?解答:在时间相同时,速度与路程成正比例V哥:V弟=5:3S哥:S弟=5:3按比例分配:200÷(5-3)=100(千米)总路程:100×(5+3)=800(千米)3、聪聪和明明的速度比是6∶5,聪聪在明明后面20米,他们同时同向出发,聪聪要走多少米就可以追上明明?解答:在时间相同时,速度与路程成正比例V聪:V明=6:5S聪:S明=6:5按比例分配:20÷(6-5)=20(千米)聪聪走的路程:20×6=120(米)例2一辆货车从甲城开往乙城,又立即按原路从乙城返回到甲城,一共用了9小时,去时每小时行40千米,返回时每小时行50千米。
甲乙两城相距多少千米?解答:去和返回所走的总路程相同,在路程相同前提下,速度和时间成反比例V去:V回=40:50=4:5t去:t回=5:4,总时间时9小时,按比例分配得:9÷(5+4)=1(小时)t去:1×5=5(小时)总路程:5×40=200(千米)举一反三1、一架侦查飞机最多能带飞行18小时的汽油,它从基地带满油到某地去侦察(中途没有加油站),去时顺风每小时飞行1500千米,回时逆风飞行每小时飞行1200千米。
行程问题之比例的应用【知识点总结】当速度一定时,时间和路程成正比例关系当时间一定时,速度和路程成正比例关系当路程一定时,时间和速度成反比例关系【例题讲解】例1一列客车和一列货车同时从甲乙两地同时相向而行,客车与货车的速度比是11∶8,甲乙两地相距380千米。
求相遇时,客车比货车多行了多少千米?解答:在时间相同时,速度与路程成正比例V客:V货=11:8S客:S货=11:8按比例分配:380÷(11+8)=20(千米)客车比火车多行的路程:20×(11-8)=60(千米)举一反三1、小军和小明同时从A、B两地相向而行,A、B两地相距600米,小军和小明的速度比是3∶2,相遇时,小明走了多少米?解答:在时间相同时,速度与路程成正比例V军:V明=3:2S军:S明=3:2按比例分配:600÷(3+2)=120(千米)小明走的路程:120×2=240(千米)2、哥哥和弟弟同时从家和学校相向而行,哥哥和弟弟的速度比是5∶3,相遇时哥哥比弟弟多走了200米,求家离学校有多少米?解答:在时间相同时,速度与路程成正比例V哥:V弟=5:3S哥:S弟=5:3按比例分配:200÷(5-3)=100(千米)总路程:100×(5+3)=800(千米)3、聪聪和明明的速度比是6∶5,聪聪在明明后面20米,他们同时同向出发,聪聪要走多少米就可以追上明明?解答:在时间相同时,速度与路程成正比例V聪:V明=6:5S聪:S明=6:5按比例分配:20÷(6-5)=20(千米)聪聪走的路程:20×6=120(米)例2一辆货车从甲城开往乙城,又立即按原路从乙城返回到甲城,一共用了9小时,去时每小时行40千米,返回时每小时行50千米。
甲乙两城相距多少千米?解答:去和返回所走的总路程相同,在路程相同前提下,速度和时间成反比例V去:V回=40:50=4:5t去:t回=5:4,总时间时9小时,按比例分配得:9÷(5+4)=1(小时)t去:1×5=5(小时)总路程:5×40=200(千米)举一反三1、一架侦查飞机最多能带飞行18小时的汽油,它从基地带满油到某地去侦察(中途没有加油站),去时顺风每小时飞行1500千米,回时逆风飞行每小时飞行1200千米。
例题1:甲乙两车的速度比是4:7,两车同时从两地相对出发,在距中点15千米处相遇,两地相距多少千米?【分析】两车同时出发,到相遇的时候所用的时间是相同的,时间相同,速度和路程有什么样的关系?练习1:甲乙两人的速度比是3:2,两人同时从A地出发前往B地,当甲到达时,乙还差200米,那么AB两地之间的距离是多少米?例题2:姐妹两人骑车从相距10千米的甲地去乙地,妹妹比姐姐早出发10分钟,结果两人同时到达,姐妹两人骑车速度比是5:4,那么姐姐骑车的速度是多少千米每小时?【分析】姐妹两人都从甲地去乙地,所走的路程是一样的,路程相同,时间和速度有什么样的关系?练习2:小高和墨莫早上8:00同时从甲地出发去乙地,小高的速度是墨莫的两倍,小高比墨莫早到40分钟,那么小高几点到达乙地?例题3:大,小客车从甲乙两地同时相向开出,大小客车的速度比是4:5,两车开出后60分钟相遇,并继续前进,问:大客车比小客车晚多少分钟到达目的地?【分析】相遇点与甲乙两地的距离之比是多少?练习3:甲乙两人同时从A,B两地出发相向而行,甲的速度是乙的两倍,两人出发10分钟后相遇,并继续前进,那么甲比乙早多少分钟到达目的地?例题4:萱萱去姥姥家,途中要经过上坡、平路和下坡各一段,路程比为1:2:1,已知萱萱在三种路段上行走的速度比为3:4:6,且在坪路上行走的时间是25分钟,那么萱萱去姥姥家路上一共花了多长时间?【分析】题目告诉了我们路程比与速度比,那么时间比是多少?各段分别用了多长时间?练习4:小红帽去外婆家要翻过一座高山,上山与下山的路程比是2:3,小红帽上山的速度是1米/秒,下山的速度是2米/秒,且路上一共用了70分钟,那么小红帽从外婆家回来需要多少分钟?例题5:甲乙两车分别从A,B两地出发匀速行驶,相向而行。
当甲车到达B地时,乙车距A地30千米;当乙车到达A地时,甲车超过B地40千米,A,B两地相距多少千米?【分析】行程问题中一定要注意“同时性”。
行程问题是国家公务员考试中数学运算的常考题型之一,涉及最多的是相遇问题与追及问题。
专家提醒各位考生,在复习数学运算的过程中,应重点掌握行程问题中的几种题型和解题方法。
一、行程问题知识要点(一)行程问题中的三量行程问题研究的是物体运动中速度、时间、路程三者之间的关系。
这三个量之间的基本关系式如下:路程=速度×时间;时间=路程÷速度;速度=路程÷时间。
上述三个公式可称为行程问题的核心公式,大部分的行程问题都可通过找出速度、时间、路程三量中的两个已知量后利用核心公式求解。
(二)行程问题中的比例关系时间相等,路程比=速度比;速度相等,路程比=时间比;路程一定,速度与时间成反比。
二、行程问题的主要题型(一)平均速度问题平均速度问题公式:(二)相遇问题1.相遇问题的特征(1)两人(物体)从不同地点出发作相向运动;(2)在一定时间内,两人(物体)相遇。
与基本的行程问题相比,专家认为,相遇问题涉及两个或多个运动物体,过程较为复杂。
一般借助线段图来理清出发时间、出发地点等基本量,进而利用行程问题核心公式解题。
2.相遇问题公式公式中的相遇路程指同时出发的两人所走的路程之和。
如果不是同时运动,要转化为标准的同时出发、相向运动的问题来套用相遇问题公式。
(三)追及问题1.追及问题的特征(1)两个运动物体同地不同时(或同时不同地)出发做同向运动。
后面的比前面的速度快。
(2)在一定时间内,后面的追上前面的。
与相遇问题类似,专家建议考生可通过线段图来理清追及问题的运动关系。
2.追及问题公式在追及问题中,我们把开始追及时两者的距离称为追及路程,大速度减小速度称为速度差。
由此得出追及问题的公式:(四)多次相遇问题相遇问题的复杂形式是多次相遇问题,多次相遇问题按照运动路线不同分为直线多次相遇和环形多次相遇两类。
多次相遇问题重要结论:1.从两地同时出发的直线多次相遇问题中,第n次相遇时,路程和等于第一次相遇时路程和的(2n-1)倍;每个人走的路程等于他第一次相遇时所走路程的(2n-1)倍。
巧解行程问题--正反比例在各地公职类、事业单位的行测考试中行程问题几乎是数学运算部分的必考题型,很多考生在遇到该类型题目时都会感到无从下手。
但是,行程问题真的有那么复杂吗?其实不然。
接下来中公教育专家给大家详细讲解数量关系中行程问题的解题方法,让大家在最短的时间内得出答案并得分。
行程问题虽然考察的知识点较多,但是核心公式只有一个,即“路程=速度×时间”。
我们可以得出该公式中存在的正反比的关系,即:1、时间一定,路程与速度成正比;2、速度一定,路程与时间成正比;3、路程一定,速度与时间成反比。
各位考生只要牢记这三个简单且熟知的正反比关系就可以轻松拿下大部分的普通类行程问题。
下面,我们通过下面几个题目为大家详细分析如何应用正反比例解决行程问题。
例1.骑自行车从甲地到乙地,以10千米/时的速度行进,下午1时到;以15千米/时的速度行进,上午 11 时到。
如果希望中午 12 时到,那么应以怎样的速度行进?A.11 千米/时B.12 千米/时C.12.5千米/时D.13.5千米/时【答案】B。
解析:在通过两次不同的速度进行行走的过程中,存在路程=速度×时间的关系,且路程保持一定可以采用正反比进行解题。
第一次和第二次的速度之比为10:15=2:3,进而时间之比为3:2,第一次比第二次多1份,多2小时,故知1份对应2小时,进而知第一次的时间3份为6小时,总路程为6×10=60千米,第三次中午12点到,用时6-1=5小时,故速度为60÷5=12千米/时,故选B。
例2.某部队从驻地乘车赶往训练基地,如果车速为54公里/小时,正好准点到达;如果将车速提高19,就可比预定的时间提前20分钟赶到;如果将车速提高13,可比预定的时间提前多少分钟赶到?A.30B.40C.50D.60【答案】选C。
解析:由于两次提速后与提速前均存在路程=速度×时间的关系,且所走路程相同,因此可以采用正反比进行解题。
六年级巧用比例解行程问题例1:甲车的速度为4x,乙车的速度为7x,两车相遇时,甲车已经行驶了x小时,乙车已经行驶了2x小时。
根据题意可得出以下等式:4x * x = 7x * 2x,解得x=2.因此,甲车行驶了8千米,乙车行驶了14千米,AB两地相距22千米。
例2:设甲车的速度为v,乙车的速度为v+52/6.5=8+v/2,两车相遇时,甲车已经行驶了6.5v/(8+v/2)小时,乙车已经行驶了6.5v/(v/2+52/6.5)小时。
根据题意可得出以下等式:6.5v/(8+v/2) = 6.5v/(v/2+52/6.5)+52,解得v=70.因此,AB两地相距455千米。
1、设甲车的速度为7x,乙车的速度为5x,两车相遇时,甲车已经行驶了x小时,乙车已经行驶了2x小时。
根据题意可得出以下等式:7x * x = 5x * 2x,解得x=2.因此,AB两地相距24千米。
2、设两只轮船离甲、乙两港的距离分别为x和y,根据题意可得出以下等式:x+y=14,42t=5(y-x),解得x=2,y=12.因此,甲、乙两港间的距离为14千米。
3、设两城之间的距离为x,客车的速度为v,货车的速度为v/2,两车相遇时,客车已经行驶了x-192千米,货车已经行驶了x-192千米+v/2 * 15小时。
根据题意可得出以下等式:(x-192)/v = (x-192+v/2*15)/(v+v/2),解得x=1200.因此,两城间的距离为1200千米。
4、设甲车的速度为v,乙车的速度为v/3,两车相遇时,甲车已经行驶了3v-340千米,乙车已经行驶了v-360千米。
根据题意可得出以下等式:3v-340=v-360,解得v=100.因此,AB两地相距300千米。
例3:设甲车的速度为2x,乙车的速度为3x,两车相遇时,甲车已经行驶了t小时,乙车已经行驶了5t/3小时。
根据题意可得出以下等式:2x * t = 3x * 5t/3,解得t=5.因此,甲车行完全程需要10小时。
一般行程问题、比和比例解决行程问题比例做行程问题速度、时间、距离,这三个量的关系:(1)时间相同,速度比=距离比 当甲乙行驶时间相同时,如果V 甲:V 乙=3:4那么S 甲:S 乙=3:4;(2)速度相同,时间比=距离比 当甲乙速度相同时,如果T 甲:T 乙=3:4 那么S 甲:S 乙=3:4(3)距离相同,速度比=时间的反比 当甲乙行驶距离相同时,如果T 甲:T 乙=3:4 那么V 甲:V 乙=4:3。
例:甲乙二车同时从AB 两地同时出发,相向而行,甲车每小时行56千米,乙车每小时行48千米。
两车在距离中点32千米处相遇。
求AB 两地相距多少千米?分析:这道题给了两车的速度,我们很容易得到两车的速度比。
这时我们可以用比例来做这道题。
大家要抓住三个要点:一、时间相同,速度比=距离比。
二、两车第一次迎面相遇时合走一个全程。
三、两车在距离中点处相遇,即:两车相遇时,甲比乙多走32×2=64。
解:由题意然V 甲:V 乙=56:48=7:6即:相同时间内,甲走7份乙走6份。
两车第一次迎面相遇时合走一个全程。
我们可以把AB 之间的路程分为(7+6)=13份。
两车相遇时,甲比乙多走1份是32×2=。
AB 之间的路程为13份,AB 之间的路程为13×64=。
这时这道题就变得很简单了。
如果不用比例做这道题,还有别的做法吗?下面我们看以下几种做法:方法二:两车相遇时,甲比乙多走32×2=。
出现距离差属于追及问题,而这道题是相遇问题,我们可以把相遇问题转化成追及问题。
每小时甲比乙多走56-48=。
距离差÷速度差=追击时间。
64÷8=8小时。
即相遇时间为8小时。
所以相遇时间×速度和=距离和(56+48)×8=方法三:在行程问题中常用到列方程解应用题,大家要注意培养自己列方程解应用题的能力,这对你今后中学的学习很有帮助。
那么这道题我们就用列方程解一下。
【例1】
甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们两人的下山速度都是各自上山速度的倍,而且甲比乙速度快。
两人出发后 1 小时,甲与乙在离山顶600 米处相遇,当乙到达山顶时,甲恰好到半山腰。
那么甲回到出发点共用多少小时
]
【例2】
王叔叔开车从北京到上海,从开始出发,车速即比原计划的速度提高了1
9
,结果提前一个半小时到达;
返回时,按原计划的速度行驶280 千米后,将车速提高1
6
,于是提前1 小时40 分到达北京。
北京、
上海两市间的路程是多少千米【例3】
一列火车出发 1 小时后因故停车小时,然后以原速的3
4
前进,最终到达目的地晚小时。
若出发 1 小
时后又前进90 公里再因故停车小时,然后同样以原速的3
4
前进,则到达目的地仅晚1 小时,那么
整个路程为多少公里
)
【例4】
小芳从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路,一半下坡路。
小芳上学走这两条路所用的时间一样多。
已知下坡的速度是平路的倍,那么上坡的速度是平路速度的多少倍
~
行程问题中的比例
【例5】
早晨,小张骑车从甲地出发去乙地。
下午 1 点,小王开车也从甲地出发,前往乙地。
下午 2 点时两人之间的距离是15 千米。
下午 3 点时,两人之间的距离还是l5 千米。
下午 4 点时小王到达乙地,晚上7 点小张到达乙地。
小张是早晨几点出发
…
【例6】
从甲地到乙地,需先走一段下坡路,再走一段平路,最后再走一段上坡路。
其中下坡路与上坡路的距离相等。
陈明开车从甲地到乙地共用了 3 小时,其中第一小时比第二小时多走15 千米,第二小时比第三小时多走25 千米。
如果汽车走上坡路比走平路每小时慢30 千米,走下坡路比走平路每小时快15 千米。
那么甲乙两地相距多少千米
!
…。