数学分析华东师大版
- 格式:pptx
- 大小:525.99 KB
- 文档页数:23
第十一章反常积分§1 反常积分概念一问题提出在讨论定积分时有两个最基本的限制:积分区间的有穷性和被积函数的有界性.但在很多实际问题中往往需要突破这些限制,考虑无穷区间上的“积分”,或是无界函数的“积分”,这便是本章的主题.例1 ( 第二宇宙速度问题) 在地球表面垂直发射火箭( 图11 - 1 ) , 要使火箭克服地球引力无限远离地球, 试问初速度v 0 至少要多大?设地球半径为R, 火箭质量为m, 地面上的重力加速度为g .按万有引力定律,在距地心x( ≥R) 处火箭所受的引力为mg R2F = .x2于是火箭从地面上升到距离地心为r ( > R) 处需作的功为rmg R ∫∫2∫d x = mg R21 - 1 .Rx2Rr当 r → + ∞ 时 , 其 极限 mg R 就是 火箭 无限 远 离地 球 需作 的 功 .我们很自然地会把这极限写作上限为 + ∞的“ 积分”:图 11 - 1+ ∞mg R 2d x = limrmgR2Rx2r → + ∞ Rd x = mg R . x2最后 , 由机械能守恒定律可求得初速度 v 0 至少应使1 22mv 0 = mg R .用 g = 9 .81 ( m 6s /2) , R = 6 .371× 106( m ) 代入 , 便得v 0 =2 g R ≈ 11 .2( k m 6s /) .例 2 圆 柱形桶 的内壁高 为 h , 内半 径为 R , 桶底有 一半径为 r 的小孔 ( 图11 - 2) .试问从盛满水开始打开小孔直至流完桶中的水 , 共需多少时间 ?2∫· R u∫ R2§1 反常积分概念265从物理学知道 , 在 不计 摩 擦力 的情 形下 , 当桶 内水 位 高度为 ( h - x ) 时 , 水从孔中流出的流速 ( 单位 时间内 流过 单位截面积的流量 ) 为v =2 g( h - x) ,其中 g 为重力加速度 .设在很小一段时 间 d t 内 , 桶 中液 面降 低 的微 小量 为d x , 它们之间应满足πR 2 d x = v πr 2 d t ,图 11 - 2由此则有d t =R d x , x ∈ [0 , h] . r 22g( h - x )所以流完一桶水所需时间在形式上亦可写成“积分”:ht f =R 2d x .r 22 g( h - x)但是在这里因为被积函数是 [0 , h) 上的无界函数 , 所以它的确切含义应该是u2t f = lim∫2d xu → h-r 2 g( h - x)= lim-22g r 2h - h - uu → h=2 h R .g r相对于以前所讲的定积分 ( 不妨 称之 为正常 积分 ) 而 言 , 例 1 和例 2 分别 提 出了两类反常积分 .二 两类反常积分的定义定义 1 设函数 f 定义在无穷区间 [ a, + ∞ ) 上 , 且在任 何有 限区间 [ a , u]上可积 .如果存在极限lim∫f ( x ) d x = J, ( 1)u → + ∞ a则称此极限 J 为函数 f 在 [ a, + ∞ ) 上的无穷限反常积分 ( 简称无穷积分 ) , 记作+ ∞J =f ( x ) d x ,( 1′)a∫ ∫ + ∞ + ∞并称f ( x) d x 收 敛 . 如 果 极 限 ( 1) 不 存 在 , 为 方 便 起 见 , 亦 称 f ( x) d xaa发散 .类似地 , 可定义 f 在 ( - ∞ , b] 上的无穷积分 :bb∫ ∫ ∫ ∫ ∫ ∫u266第十一章 反 常 积 分∫ f ( x )d x =lim∫f ( x ) d x .( 2)- ∞u → - ∞ u对于 f 在 ( - ∞ , + ∞ ) 上的无穷积分 , 它用前面两种无穷积分来定义 :+ ∞af ( x ) d x = - ∞- ∞+ ∞ f ( x) d x + af ( x) d x ,( 3)其中 a 为任一实数 , 当且仅当右边两个无穷积分都收敛时它才是收敛的 .注 1 无穷积分 ( 3) 的收敛性与收敛时的值 , 都和实数 a 的选取无关 . 注 2 由于无穷积分 ( 3) 是由 (1 ) 、( 2) 两类无 穷积分来 定义 的 , 因此 , f 在 任 何有限区间 [ v , u] ì ( - ∞ , + ∞ ) 上 , 首先必须是可积的 .+ ∞注 3af ( x ) d x 收 敛 的 几 何 意 义 是 : 若 f 在[ a , + ∞ ) 上为非负连续函数 , 则图 11 - 3 中介于曲线y = f ( x) , 直线 x = a 以及 x 轴之间那一块向右无限 延伸的阴影区域有面积 J .例 3 讨论无穷积分+ ∞图 11 - 3的收敛性 .解 由于d x1xp( 4)ud x 1x p=1 1 - p ( u1 - p - 1 ) , p ≠ 1 ,ln u ,p = 1 ,1lim∫d x=u → + ∞ 1xpp - 1 ,p > 1 + ∞p ≤ 1 ,因此无穷积分 (4 ) 当 p > 1 时收敛 , 其值为1; 而当 p ≤1 时发散于 + ∞ .p - 1从图 11 - 4 看到 , 例 3 的结论是 很直观 的 : p的值越大 , 曲线 y = 1当 x > 1 时越靠近 x 轴 , 从xp而曲线下方的阴影区域存在有限面积的可能性也 就越大 .例 4 讨论下列无穷积分的收敛性:∫1∫)+ ∞d x2x( ln x)p ; 2) + ∞d x- ∞ 1 + x2 .解 1 ) 由 于无 穷 积分 是 通 过变 限 定积 分 的 极限来 定义 的 , 因此 有关定 积分 的换元 积分 法和图 11 - 4a b∫ ∫∫ §1 反常积分概念267分部积分法一般都可引用到无穷积分中来 .对于本例来说 , 就有∫+ ∞d x+ ∞d t 2x ( l n x )p=∫ln 2tp.从例 3 知道 , 该无穷积分当 p > 1 时收敛 , 当 p ≤1 时发散 .2) 任取实数 a, 讨论如下两个无穷积分 :∫d x+ ∞d x- ∞1 + x2和∫a由于a1 + x2.lim∫d x =lim ( arctan a - arctan u )u → - ∞u 1 + x 2vu → - ∞= arctan a + π,2lim∫d x =lim ( arctan v - arctan a)v → + ∞a1 + x 2v → + ∞π2- arctan a ,因此这两个无穷积分都收敛 .由定义 1 ,∫+ ∞d x ad x+ ∞d x- ∞1 + x2=∫- ∞1 + x2+∫a1 + x2= π .注 由于上述结果与 a 无关 , 因此若取 a = 0 , 则可使计算过程更简洁些 .定义 2 设函数 f 定义在区间 ( a , b] 上 , 在点 a 的 任一右 邻域内无 界 , 但 在任何内闭区间 [ u , b] ì ( a , b] 上有界且可积 .如果存在极限lim∫f ( x ) d x = J ,( 5)u → a+u则称此极限为无界函数 f 在 ( a , b] 上的反常积分 , 记作bJ =f ( x ) d x ,( 5′)ab并称 反 常 积 分 f ( x) d x 收 敛 . 如 果 极 限 ( 5) 不 存 在 , 这 时 也 说 反 常 积 分abf ( x ) d x 发散 .a=∫在定义 2 中 , 被积函数 f 在点 a 近旁是无界的 , 这时点 a 称为 f 的瑕点 , 而无 b界函数反常积分 f ( x ) d x 又称为瑕积分 .a类似地 , 可定义瑕点为 b 时的瑕积分 :bu∫f ( x) d x =lim∫f ( x )d x . au → b-a其中 f 在 [ a , b) 有定义 , 在点 b 的任一左邻域内无 界 , 但在任何 [ a , u] ì [ a , b)1 268第十一章 反 常 积 分上可积 .若 f 的瑕点 c ∈ ( a , b) , 则定义瑕积分bcb∫f ( x ) d x =∫f ( x ) d x +∫f ( x )d x aacub= lim∫ f ( x ) d x + lim ∫f ( x ) d x .( 6)u → c - av → c+v其中 f 在 [ a , c) ∪ ( c, b] 上有定义 , 在点 c 的 任一领 域内 无界 , 但 在任何 [ a , u] ì[ a , c) 和 [ v , b] ì ( c, b] 上都可积 .当且仅当 ( 6 ) 式右 边两个 瑕积分都 收敛时 , 左边的瑕积分才是收敛的 .又若 a 、b 两点都是 f 的瑕点 , 而 f 在任何 [ u , v ] ì ( a, b) 上可积 , 这时定义 瑕积分bcb∫f ( x ) d x =∫f ( x ) d x +∫f ( x ) d xaaccv= lim∫f ( x) d x + lim ∫f ( x) d x , ( 7)u → a+uv → b-c其中 c 为 ( a , b) 内任一实数 .同样地 , 当且仅当 ( 7) 式右边两个 瑕积分都 收敛时 ,左边的瑕积分才是收敛的 .例 5 计算瑕积分∫d x的值 .1 - x 2解 被积函数 f ( x) =1 在 [ 0 , 1 ) 上 连续 , 从 而在 任何 [ 0 , u] ì [ 0 , 1)1 - x2上可积 , x = 1 为其瑕点 .依定义 2 求得1u∫d x = lim∫d x 01 - x 2-u → 11 - x2例 6 讨论瑕积分= limu → 1 -1arcsin u = π.2∫d x 的收敛性 .xq( q > 0 ) ( 8)∫1 1 x解 被积函数在 (0 , 1 ] 上连续 , x = 0 为其瑕点 .由于1d x uxq=1 1 - q( 1 - u1 - q) ,q ≠ 1 ,( 0 < u < 1) ,- ln u ,q = 1故当 0 < q < 1 时 , 瑕积分 (8 ) 收敛 , 且∫d x ∫ d x 1 q=limu → 0 +uxq= 1 - q;∫ ∫∫∫ ∫∫ ∫§1 反常积分概念269而当 q ≥1 时 , 瑕积分 ( 8) 发散于 + ∞ .上述结论在图 11 - 4 中同样能获得直观的反映 . 如果把例 3 与例 6 联系起来 , 考察反常积分+ ∞我们定义d x 0xp ( p > 0 ) .( 9)∫+ ∞d x 1d x + ∞d x 0xp=∫xp+∫1xp,它当且仅当右边的瑕积分和无穷积分 都收 敛时 才收敛 .但 由例 3 与 例 6 的结 果 可知 , 这 两 个 反 常 积 分 不 能 同 时 收 敛 , 故 反 常 积 分 ( 9 ) 对 任 何 实 数 p 都 是 发散的 . 习 题1 . 讨论下列无穷积分是否收敛 ? 若收敛 , 则求其值 :( 1∫)+ ∞x e- x2+ ∞d x ; (2)- ∞2x e - xd x ;( 3∫)+ ∞1+ ∞d x ; (4)d x20 e x+ ∞1 x ( 1 + x)+ ∞( 5∫)d x; (6)∫ e- xsin x d x;- ∞ 4 x 2+ 4 x + 50 + ∞+ ∞( 7∫)e xsin x d x ; (8)- ∞d x .1 + x 22 . 讨论下列瑕积分是否收敛 ?若收敛 , 则求其值 :( 1∫)bd x 1d x;(2);a( x - a) p2 0 1 - x 21( 3∫)d x ;(4)∫xd x ;| x - 1| 01 - x 2( 5∫)11ln x d x ;(6)xd x; 1 - x( 7∫)1d x1d x;(8)p.x - x 2x( ln x);a∫ b3 . 举例说明 : 瑕积分∫f ( x ) d x 收敛时∫, bf 2 ( x) d x 不一定收敛 .a4 . 举例说明∫:+ ∞f ( x) d x 收敛且 f 在 [ a , + ∞ ) 上连续时 , 不一定有 limax → +∞f ( x) = 0 .+ ∞ 5 . 证明: 若af ( x )d x 收敛 , 且存在极限 lim x → +∞f ( x) = A , 则 A = 0 .∫ ∫∫∫∫∫ ∫∫ ∫∫ ∫ ∫∫270 第十一章 反 常 积 分+ ∞ 6 . 证明: 若 f 在[ a, + ∞) 上可导 , 且a+ ∞f ( x)d x 与 af ′( x )d x 都收敛 , 则 lim x → +∞f ( x) = 0 .§2 无穷积分的性质与收敛判别一 无穷积分的性质+ ∞由定 义 知 道 , 无 穷 积 分auf ( x) d x 收 敛 与 否 , 取 决 于 函 数 F( u ) =f ( x ) d x 在 u → + ∞ 时是否存在极限 .因此可由函数极限的柯西准则导出无穷 a积分收敛的柯西准则 .+ ∞定理 11 .1 无穷积分a≥ a, 只要 u 1 、u 2 > G , 便有f ( x ) d x 收敛 的充要条件是 : 任给 ε > 0 , 存在 Guuu∫2f ( x ) d x -∫1f ( x )d x= ∫ f ( x )d x< ε .a au此外 , 还可根据函数极限的性质与定积分的性质 , 导出无穷积分的一些相应 性质 .+ ∞ 性质 1 若a+ ∞+ ∞f 1 ( x) d x 与 af 2 ( x ) d x 都 收 敛 , k 1 、k 2 为 任 意 常 数 , 则[ k1 f 1( x) + k 2 f 2 ( x) ] d x 也收敛 , 且a+ ∞+ ∞+ ∞[ k 1 f 1 ( x ) + k 2 f 2 ( x ) ] d x = k 1aaf 1 ( x ) d x + k 2af 2 ( x) d x .( 1)+ ∞性 质 2 若 f 在 任 何 有 限 区 间 [ a , u] 上 可 积 , a < b, 则af ( x ) d x 与+ ∞f ( x) d x 同敛态 ( 即同时收敛或同时发散 ) , 且有b+ ∞b+ ∞∫ f ( x ) d x =∫ f ( x )d x +∫ f ( x )d x ,( 2)aab21∫ ∫ 其中右边第一项是定积分 .+ ∞性质 2 相当于定积分的积分区间可加性 , 由它又可导出af ( x ) d x 收敛的另一充要条件 : 任给 ε > 0 , 存在 G ≥ a , 当 u > G 时 , 总有+ ∞f ( x ) d x< ε .u∫ ∫ ∫ ∫∫∫ ∫ ∫ ∫ ∫ ∫∫ 2=§2 无穷积分的性质与收敛判别271事实上 , 这可由+ ∞u+ ∞∫ f ( x ) d x =∫ f ( x ) d x +∫ f ( x ) d xaau结合无穷积分的收敛定义而得 .+ ∞性质 3 若 f 在任何有限区间 [ a , u ] 上可积 , 且有a+ ∞f ( x) d x 亦必收敛 , 并有a| f ( x ) | d x 收敛 , 则+ ∞ + ∞f ( x) d x ≤ aa+ ∞f ( x ) d x . ( 3)证 由af ( x) d x 收敛 , 根据柯西准则 ( 必要性 ) , 任给 ε > 0 , 存在 G ≥a , 当 u 2 > u 1 >G 时 , 总有uuf ( x )d x 2uf ( x )d x < ε .1u 1利用定积分的绝对值不等式 , 又有uu2f ( x ) d x ≤ 2uu11+ ∞f ( x )d x < ε .再由柯西准则 ( 充分性 ) , 证得af ( x ) d x 收敛 .uu又因∫ f ( x ) d x ≤∫ f ( x )d x ( u > a) , 令 u → + ∞ 取极限 , 立刻得到不aa等式 (3 ) .+ ∞+ ∞当f ( x ) d x 收敛时 , 称aaf ( x )d x 为绝对收敛 .性质 3 指出 : 绝对收敛的无穷积分 , 它自身也一定收敛 .但是它 的逆命 题一 般不成 立 , 今 后将举 例说 明 收敛的无穷积分不一定绝对收敛 .∫ ∫ ∫我们称收敛而不绝对收敛者为条件收敛 . 二 比较判别法首先给出无穷积分的绝对收敛判别法 .u+ ∞由于 | f ( x ) | d x 关于上限 u 是单调递增的 , 因此aa| f ( x ) | d x 收敛的u充要条件是a| f ( x) | d x 存在上界 .根据这一分析 , 便立 即导出下 述比较判 别法 ( 请读者自己写出证明 ) :定理 11 .2 ( 比较法则 ) 设定义在 [ a , + ∞ ) 上的 两个 函数 f 和 g 都 在任 何∫ ∫ ∫∫ 0∫∫ ∫∫ ∫∫∫272 第十一章 反 常 积 分有限区间 [ a , u] 上可积 , 且满足f ( x) ≤g ( x ) , x ∈ [ a, + ∞ ) ,+ ∞ + ∞ 则当g( x ) d x 收敛时 a a+ ∞+ ∞| f ( x) | d x 必收敛 ( 或者 , 当 a| f ( x) | d x 发散时 ,ag ( x ) d x 必发散 ) .+ ∞例 1 讨论sin xd x 的收敛性 .1 + x2+ ∞解 由于1d x π1 + x2≤ 1 + x2 , x ∈ [0 , + ∞ ) , 以及∫1 + x 2=为收敛2(§1 例 4 ) , 根据比较法则∫,sin xd x 为绝对收敛 . 01 + x2上述比较法则的极限形式如下 : 推论 1 若 f 和 g 都在任何 [ a , u] 上可积 , g( x ) > 0 , 且 lim x → + ∞| f ( x) | g( x )= c,则有 :( i ) 当 0 < c < + ∞ 时∫,+ ∞+ ∞+ ∞| f ( x ) | d x 与aa+ ∞g( x ) d x 同敛态 ;( ii) 当 c = 0 时 , 由ag( x ) d x 收敛可推知 a+ ∞f ( x) d x 也收敛 ;+ ∞(i ) ) 当 c = + ∞ 时 , 由a+ ∞g( x ) d x 发散可推知 a+ ∞f ( x ) d x 也发散 .当选用∫d x 作为比较对 象g( x ) d x 时 , 比较 判别 法及 其 极限 形式 成1x pa为如下两个推论 ( 称为柯西判别法 ) .推论 2 设 f 定义于 [ a , + ∞ ) ( a > 0 ) , 且在 任何 有限区 间 [ a , u] 上 可积 , 则有 :( i ) 当 f ( x) ≤ 1, x ∈ [ a , + ∞ ) , 且 p > 1 时+ ∞+ ∞∫∫∫∫f ( x) d x 收敛 ;xpa+ ∞( i i) 当 f ( x) ≥ 1, x ∈ [ a , + ∞ ) , 且 p ≤ 1 时f ( x) d x 发散 .xpa推论 3 设 f 定义于 [ a , + ∞ ) , 在任何有限区间 [ a , u] 上可积 , 且则有 :lim x → + ∞x p f ( x ) = λ .+ ∞( i) 当 p > 1 , 0 ≤λ< + ∞时 ,f ( x ) d x 收敛 ;a+ ∞( ii) 当 p ≤ 1 , 0 < λ≤ + ∞ 时 ,af ( x) d x 发散 .∫∫ ∫ ∫∫§2 无穷积分的性质与收敛判别273例 2 讨论下列无穷限积分的收敛性 :1∫)+ ∞x αe - x d x; 2 )1+ ∞x 2d x .x 5+ 1解 本例中两个被积函数都是非负的 , 故收敛与绝对收敛是同一回事 . 1) 由于对任何实数 α都有limx → + ∞x 2 · x αe- x= lim x → + ∞xα+ 2ex= 0 ,因此根据上述推论 3( p = 2 , λ= 0) , 推知 1 ) 对任何实数 α都是收敛的 .2) 由于12limx → + ∞x 2 · x x 5+ 1= 1 ,因此根据上述推论 3( p = 1, λ= 1 ) , 推知 2) 是发散的 .2b对于f ( x ) d x 的比较判别亦可类似地进行 .- ∞三 狄利克雷判别法与阿贝尔判别法这里来介绍两个判别一般无穷积分收敛的判别法 .u定理 11 .3 ( 狄利克雷判别法 ) 若 F( u ) =f ( x ) d x 在 [ a , + ∞ ) 上有界 ,a+ ∞ g( x) 在 [ a , + ∞ ) 上当 x → + ∞ 时单调趋于 0 , 则af ( x ) g( x ) d x 收敛 .limx → + ∞u证 由 条 件 设f ( x) d x ≤ M , u ∈ [ a , + ∞ ) . 任 给 ε > 0 , 由 于ag ( x ) = 0 , 因此存在 G ≥ a , 当 x >G 时 , 有g( x ) < ε.4 M又因 g 为单调函数 , 利用积分第二中值 定理 ( 定理 9 .10 的推论 ) , 对 于任 何 u 2 > u 1 > G , 存在 ξ∈ [ u 1 , u 2 ] , 使得u∫ ∫ 21∫ f ( x ) g( x ) d x = g ( u 1∫) ξf ( x ) d x +g ( u 2∫)u2f ( x) d x .uuξ11于是有uξuf ( x ) g( x ) d x ≤g( u 1 ) ·uuf ( x ) d x+ g( u 2 ) ·∫ f ( x ) d x11ξξu= g( u 1 ) ·∫f ( x ) d x ∫-f ( x ) d xaa22u ∫∫ ∫ ∫∫∫∫ ∫∫274 第十一章 反 常 积 分2+ g( u 2 ) ·ξf ( x ) d x -∫f ( x ) d xε4 M·2 M ++ ∞aaε4 M·2 M = ε .根据柯西准则 , 证得af ( x ) g( x ) d x 收敛 .+ ∞ 定理 11 .4 ( 阿贝尔 ( Abel) 判别法 ) 若af ( x) d x 收敛 , g( x ) 在[ a , + ∞ )+ ∞ 上单调有界 , 则af ( x )g ( x ) d x 收敛 .这定理同样可用积分第二中值定理 来证 明 , 但又 可利用 狄利 克雷判 别法 更 方便地获得证明 ( 留作习题 ) .+ ∞例 3 讨论∫sin x d x 与+ ∞cos x1xp1xpd x ( p > 0 ) 的收敛性 .解 这里只讨论前一个无穷积分 , 后者有 完全 相同的 结论 .下面分 两种 情 形来讨论 :+ ∞( i) 当 p > 1 时1sin xd x 绝对收敛 .这是因为 xp + ∞d x而sin x xp≤ 1x p , x ∈ [1 , + ∞ ) ,+ ∞sin x1xp当 p > 1 时收敛 , 故由比较法则推知∫1+ ∞xpd x 收敛 .( ii) 当 0 < p ≤ 1 时1usin xd x 条 件 收 敛 .这 是 因为 对 任 意 u ≥ 1 , 有 xp∫sin x d x =cos 1 - cos u ≤ 2 , 而 1当 p > 0 时单调趋于 0 ( x → + ∞ ) , 故1xp+ ∞由狄利克雷判别法推知1sin x d x 当 p > 0 时总是收敛的 . xp另一方面 , 由于sin xxp≥+∞sin 2xx=+ ∞<∫∫∫12 x -cos 2 x2 x ,x ∈ [ 1 , +∞ ) ,cos 2 x 1其中12 xd x =22cos t td t 满 足 狄 利 克 雷 判 别 条 件 , 是 收 敛 的 , 而+ ∞d x 12 x是发散的 , 因此当 0 < p ≤ 1 时该无穷积分不是绝对收敛的 .所以它是条件收敛的 .例 4 证明下列无穷积分都是条件收敛的 :∫ ∫ ∫ ∫∫∫ ∫∫ ∫∫ ∫ ∫∫ ∫∫ ∫∫ ∫+ ∞3§2 无穷积分的性质与收敛判别275+ ∞ sin x 2d x ,1+ ∞ cos x 2d x ,1+ ∞x sin x 4d x .1证 前两个无穷积分经换元 t = x 2得到+ ∞+ ∞sin x 2d x = 1 1+ ∞+ ∞cos x 2d x = 11sin td t ,2 tcos t d t .2 t由例 3 已知它们是条件收敛的 .对于第三个无穷积分 , 经换元 t = x 2而得∫x sin x 4 d x = 1 + ∞sin t 2d t ,1它也是条件收敛的 .2∫1从例 4 中三个无穷积分的收敛性可 以看到 , 当 x → + ∞ 时被 积函数 即使 不 趋于零 , 甚至是无界的 , 无穷积分仍有可能收敛 . 习 题1 . 证明定理 11 .2 及其推论 1 .2 . 设 f 与 g 是定义在 [ a , + ∞ )上的函数 , 对任何 u > a , 它 们在 [ a , u] 上 都可积 .证明 :+ ∞ 若a收敛 .+ ∞f2( x) d x 与a+ ∞ g 2 ( x) d x 收 敛 , 则a+ ∞f ( x) g( x) d x 与 a[ f ( x) + g( x ) ]2 d x 也 都3 . 设 f 、g 、h 是定义 在 [ a , + ∞ ) 上 的 三 个 连 续 函数 , 且 成 立 不等 式 h ( x ) ≤ f ( x ) ≤ g( x) .证明 :+ ∞ (1) 若a+ ∞ h( x )d x 与 a+ ∞g( x) d x 都收敛 , 则 af ( x) d x 也收敛 ;+ ∞(2) 又若a+ ∞h( x )d x =a+ ∞g( x) d x = A , 则af ( x) d x = A .4 . 讨论下列无穷积分的收敛性 :+ ∞+ ∞( 1∫)d x; (2)xd x ;x 4+ 1+ ∞∫11 - ex+ ∞( 3∫)( 5∫) d x ; (4)0 1 +x ln ( 1 + x)d x ;(6)x arctan x 11 + x 3 d x;+ ∞ xmd x( n 、m ≥ 0 ) .1x n1 + xn5 . 讨论下列无穷积分为绝对收敛还是条件收敛 :( 1∫)sin xd x ; (2 )1x+ ∞sgn( sin x)d x ;1 + x2+ ∞ + ∞∫∫ ∫ ∫ ∫ ∫ a ∫bbu∫276第十一章 反 常 积 分( 3∫)x cos xd x;(4 )100 + xln( ln x) sin x d x .eln x6 . 举 例 说 明∫:+ ∞+ ∞ + ∞f ( x) d x 收 敛 时aaf 2( x ) d x 不 一 定 收敛∫;+ ∞f ( x )d x 绝 对 收 敛时 ,af2( x) d x 也不一定收敛 .a+ ∞+ ∞7 . 证明: 若af ( x )d x 绝对收敛 , 且 lim x →+ ∞f ( x) = 0 , 则a+ ∞f 2( x) d x 必定收敛 .8 . 证明: 若 f 是 [ a , + ∞) 上的单调函数 , 且 af ( x)d x 收敛 , 则 lim x → +∞f ( x) = 0 , 且 f ( x)= o1 x , x →+ ∞ .+ ∞9 . 证明: 若 f 在 [ a , + ∞ ) 上一致连续 , 且a10 . 利用狄利克雷判别法证明阿贝尔判别法 .f ( x) d x 收敛, 则 lim x → +∞f ( x) = 0 .§3 瑕积分的性质与收敛判别类似于无穷积分的柯西收敛准则以及其后 的三个性 质 , 瑕积分 同样可由 函bb数极限 lim∫f ( x) d x =∫f ( x ) d x 的原意写出相应的命题 . u →+ uab 定 理 11 .5 瑕积分 f ( x ) d x( 瑕点为 a) 收敛的充要条件是 : 任给ε> 0 , 存a在 δ > 0 , 只要 u 1 、u 2 ∈ ( a , a + δ) , 总有∫f ( x ) d x -∫ f ( x) d x2=f ( x )d x < ε .uuu121性质 1 设 函数 f 1 与 f 2 的 瑕 点 同为 x = a , k 1 、k 2 为 常 数 , 则 当瑕 积 分bb b∫ f 1( x ) d x 与∫ f 2( x ) d x 都 收敛 时 , 瑕积 分∫[ k1 f 1( x ) + k 2 f 2 ( x ) ] d x 必 定 收aaa敛 , 并有+ ∞+ ∞a ∫∫b b b∫[ k1 f1 ( x) + k2 f2 ( x ) ]d x =k∫1f1 ( x ) d x + k2af2 ( x ) d x . ( 1) a性质2 设函数 f 的瑕点为x = a, c ∈( a ,b ) 为任一常数. 则瑕积分b c∫f ( x ) d x 与∫f ( x ) d x 同敛态, 并有a ab c b∫f ( x ) d x =∫f ( x) d x +∫f ( x ) d x , ( 2)a a cb其中 f ( x ) d x 为定积分.c∫ ∫ ∫∫∫∫∫ ∫b∫∫§3 瑕积分的性质与收敛判别277性质 3 设函数 f 的瑕点为 x = a , f 在 ( a , b] 的任一内闭区间 [ u , b] 上可b积 .则当af ( x )d x 收敛时∫,bbf ( x) d x 也必定收敛 , 并有ab∫f ( x ) d x ≤∫ f ( x)d x . ( 3)aa bb同样地 , 当af ( x )d x 收敛时 , 称 f ( x) d x 为绝对收敛 .又称收敛而不绝a对收敛的瑕积分是条件收敛的 .判别瑕积分绝对收敛的比较法则及其推论如下 :定理 11 .6 ( 比较法则 ) 设定义在 ( a , b] 上的两个函数 f 与 g , 瑕点 同为 x = a, 在任何 [ u , b] ì ( a , b] 上都可积 , 且满足f ( x ) ≤ g( x) , x ∈ ( a , b] .b则当 g( x ) d x 收 敛时 ,ab bf ( x ) d x 必定 收 敛 ( 或者 , 当aaf ( x) d x 发散 时 ,bg ( x ) d x 亦必发散 ) .a推论 1 又若 g( x) > 0 , 且 limx → a +bf ( x ) g( x)= c, 则有 :b( i) 当 0 < c < + ∞ 时 ,abf ( x ) d x 与 g( x ) d x 同敛态 ;ab( i i ) 当 c = 0 时 , 由∫g( x ) d x 收敛可推知∫ f ( x )d x 也收敛 ;aabb( i ii ) 当 c = + ∞ 时 , 由∫g( x ) d x 发散可推知∫f ( x ) d x 也发散 .aa当选用∫d xb作为比 较对象 g( x) d x 时 , 比较法则及其 推论 1 成 为a如下的推论 :( x - a)pa推论 2 设 f 定义于 ( a , b] , a 为其瑕点 , 且在任何 [ u , b] ì ( a , b] 上可积 , 则有 :( x - a) p ( x - a) p∫∫( i) 当 f ( x) ≤1, 且0 < p < 1 时,abf ( x) d x 收敛;( i i) 当 f ( x) ≥1, 且p ≥1 时,af ( x) d x 发散.推论3 设 f 定义于( a , b] , a 为其瑕点, 且在任何[ u , b] ì( a , b] 上可积. 如果则有: limx →a +( x - a) p f ( x ) = λ,b∫∫∫ 278 第十一章 反 常 积 分b( i ) 当 0 < p < 1 , 0≤λ< + ∞时af ( x) d x 收敛 ;b( ii) 当 p ≥ 1 , 0 < λ≤ + ∞ 时a例 1 判别下列瑕积分的收敛性 :f ( x) d x 发散 .1∫)ln xd x ; 2∫) 0x2x 1ln xd x .解 本例两个瑕 积 分 的被 积 函数 在 各自 的 积分 区 间 上分 别 保持 同 号———ln x 在 ( 0 , 1] 上恒为负 , x在 ( 1 , 2 ] 上 恒为 正———所以 它们 的瑕 积 分收 敛与 绝x对收敛是同一回事 .ln x1) 此瑕积分的瑕点为 x = 0 .由上述推论 3 , 当取 p = 34< 1 时, 有λ= lim x → 0 +3x 4 ·1ln x x= - limx → 0 +ln x1x-4所以瑕积分 1) 收敛 .= lim x → 0 +( 4 x 4 ) = 0 ,2) 此瑕积分的瑕点为 x = 1 .当取 p = 1 时 , 由λ = lim +x → 1( x - 1 ) · x ln x= lim + x → 1x - 1 ln x = 1 ,推知该瑕积分发散 . 最后举一个既是无穷积分又是瑕积分的例子 . 例 2讨论反常积分的收敛性 .+ ∞Φ(α) =xα- 11 + x d x解 把反常积分 Φ( α) 写成1α- 1+ ∞α- 1Φ(α) =∫x d x +∫x d x1 + x11 + x= I(α) + J(α) .1x ( i) 先讨论 I(α) .当 α- 1≥ 0 , 即 α≥1 时它 是定积 分 ; 当 α< 1 时它是瑕 积 分 , 瑕点为 x = 0 .由于limx → 0 +α- 1x1 - α·1 + x= 1 ,根据定理 11 .6 推论 3 , 当 0 < p = 1 - α< 1 , 即 α> 0 且 λ= 1 时 , 瑕 积分 I (α) 收α∫∫ §3 瑕积分的性质与收敛判别279敛 ; 当 p = 1 - α≥1 , 即 α≤0 且 λ= 1 时 , I (α) 发散 .( ii) 再讨论 J(α) , 它是无穷积分 .由于α- 1limx → + ∞x2 - α·x1 + x= lim x → + ∞x 1 + x= 1 ,根据定理 11 .2 推论 3 , 当 p = 2 - α> 1 , 即 α< 1 且 λ= 1 时 , J(α) 收敛 ; 而当 p = 2 -α≤1 , 即 α≥1 且 λ= 1 时 , J(α) 发散 .综上所述 , 把讨论结果列如下表 :习 题1 . 写出性质 3 的证明 .2 . 写出定理 11 .6 及其推论 1 的证明 .3 . 讨论下列瑕积分的收敛性 :( 1∫)( 3∫)d x ; (2 )( x - 1 )2d x;(4 ∫)x ln x sin x d x ;x362/ln x d x ;1 - x ( 5∫) ( 7∫)1arctan x 01 - x 3d x ; (6 )1 sin 1 d x; (8 )π62/ 0+ ∞1 - cos xx md x;e - x ln x d x .0xx0 4 . 计算下列瑕积分的值 (其中 n 为正整数 ) :( 1∫)1( ln x ) nd x ; (2 )π62/1x nd x . 01 - xπ62/5 . 证明瑕积分 J =∫ln( s in x )d x 收敛 , 且 J = - πln 2 .( 提示 : 利用∫ln (sin x) d x =π62/ 02ln( cos x )d x , 并将它们相加 .)6 . 利用上题结果 , 证明 :π2( 1∫)θln( sin θ)d θ = -πln 2;2 1π1 102( 2∫)θsin θdθ= 2πln 2 .0 1 - cos θπ1 ∫2∫ ∫∫ λ∫∫ ∫∫ ∫280 第十一章 反 常 积 分总 练 习 题1 . 证明下列等式 :1p - 1+ ∞- p( 1∫)xd x =∫xd x , p > 0;x + 1 1x + 1+ ∞p - 1+ ∞- p( 2∫)xd x =∫xd x , 0 < p < 1 .x + 1 0x + 12 . 证明下列不等式 :( 1) π<∫d x<π ;2 2 ( 2) 12 01 -1e1 - x 4+ ∞<2e - x d x < 1 + 1 .2e3 . 计算下列反常积分的值 :+ ∞+ ∞( 1)e - axcos bx d x( a > 0 ) ; (2)0 e- a xsin bx d x( a > 0 ) ;( 3∫)+ ∞ln x π62/ d x ; (4)ln( tan θ) d θ .01 + x 2+ ∞4 . 讨论反常积分sin bx d x ( b ≠ 0 ) , λ取何值时绝对收敛或条件收敛 . x5 . 证明: 设 f 在 [0 , + ∞ ) 上连续 , 0 < a < b . (1) 若 lim x → +∞f ( x) = k , 则+ ∞f ( ax) - f ( bx) 0x+ ∞d x = ( f (0) - k) ln b ;a(2) 若af( x) d x 收敛 , 则x6 . 证明下述命题 :+ ∞f ( ax) - f ( bx) 0xd x = f (0) ln b .a+ ∞(1) 设 f 为[ a , + ∞) 上的非负连续函数 .若a+ ∞x f ( x )d x 收敛 , 则 af ( x) d x 也收敛 .∫ ∫ (2) 设 f 为 [ a , + ∞ ) 上的连续可微函数 , 且当 x → + ∞ 时 , f ( x) 递减地 趋于 0 , 则+ ∞+ ∞f ( x ) d x 收敛的充要条件为aax f ′( x ) d x 收敛 .●。
华东师大数学分析答案完整版一、填空题1. 极限的定义是当自变量趋近于某个值时,函数的值趋近于另一个确定的值。
2. 函数在某一点连续的充分必要条件是左极限、右极限和函数值在该点相等。
3. 无穷小量与无穷大量的关系是无穷小量的倒数是无穷大量,无穷大量的倒数是无穷小量。
4. 函数的导数表示函数在某一点的瞬时变化率。
5. 微分表示函数在某一点的微小变化量。
6. 函数的积分表示函数在某个区间上的累积变化量。
7. 变限积分的导数是原函数的导数。
8. 无穷级数的收敛性可以通过比较判别法、比值判别法等方法进行判断。
9. 函数的泰勒级数表示函数在某一点的幂级数展开。
10. 傅里叶级数表示周期函数的三角级数展开。
二、选择题1. 下列函数中,连续的是(A)。
A. f(x) = x^2B. f(x) = 1/xC. f(x) = sin(x)D. f(x) = |x|2. 下列极限中,存在的是(B)。
A. lim(x→0) 1/xB. lim(x→∞) x^2C. lim(x→0) sin(x)/xD. lim(x→∞) e^(x)3. 下列函数中,可导的是(A)。
A. f(x) = x^3B. f(x) = |x|C. f(x) = sin(1/x)D. f(x) = x^(1/3)4. 下列积分中,收敛的是(C)。
A. ∫(1/x) dxB. ∫(1/x^2) dxC. ∫(e^(x)) dxD. ∫(1/x^3) dx5. 下列级数中,收敛的是(B)。
A. ∑(1/n)B. ∑(1/n^2)C. ∑(1/n^3)D. ∑(1/n^4)三、解答题1. 求函数 f(x) = x^3 3x + 2 在 x = 1 处的导数。
解答:f'(x) = 3x^2 3,代入 x = 1,得 f'(1) = 0。
2. 求不定积分∫(e^x) dx。
解答:∫(e^x) dx = e^x + C,其中 C 为任意常数。
P.182 习题1.验证下列等式 (1)C x f dx x f +='⎰)()( (2)⎰+=C x f x df )()(证明 (1)因为)(x f 是)(x f '的一个原函数,所以⎰+='C x f dx x f )()(.(2)因为C u du +=⎰, 所以⎰+=C x f x df )()(.2.求一曲线)(x f y =, 使得在曲线上每一点),(y x 处的切线斜率为x 2, 且通过点)5,2(.解 由导数的几何意义, 知x x f 2)(=', 所以C x xdx dx x f x f +=='=⎰⎰22)()(.于是知曲线为C x y +=2, 再由条件“曲线通过点)5,2(”知,当2=x 时,5=y , 所以有 C +=225, 解得1=C , 从而所求曲线为12+=x y3.验证x x y sgn 22=是||x 在),(∞+-∞上的一个原函数. 证明 当0>x 时, 22x y =, x y ='; 当0<x 时, 22x y -=, x y -='; 当0=x 时, y的导数为02sgn lim 0sgn )2(lim020==-→→x x x x x x x , 所以⎪⎩⎪⎨⎧=<-=>='||0000x x xx x xy 4.据理说明为什么每一个含有第一类间断点的函数都没有原函数?解 由P.122推论3的证明过程可知:在区间I 上的导函数f ',它在I 上的每一点,要么是连续点,要么是第二类间断点,也就是说导函数不可能出现第一类间断点。
因此每一个含有第一类间断点的函数都没有原函数。
5.求下列不定积分⑴C x x x x dx x dx x xdx dx dx x x x +-+-=-+-=-+-⎰⎰⎰⎰⎰-31423233233421)11(⑵C x x x dx x x x dx xx ++-=+-=-⎰⎰||ln 343)12()1(2332122⑶C gxC x gdx x ggxdx +=+⋅==⎰⎰-22212122121 ⑷⎰⎰⎰+⋅+=+⋅+=+dx dx dx x x x x x x x x )9624()3)32(22()32(222 C x x x ++⋅+=9ln 96ln 624ln 4 ⑸C x dx x dx x +=-=-⎰⎰arcsin 23112344322⑹ C x dx x dx x x dx x x +-=+-=+-+=+⎰⎰⎰)arctan 1(31)111(31)1(311)1(322222 ⑺ C x x dx x xdx +-=-=⎰⎰tan )1(sec tan 22 ⑻C x x dx x dx x xdx +-=-=-=⎰⎰⎰)2sin 21(21)2cos 1(2122cos 1sin 2 ⑼ C x x dx x x dx xx x x dx x x x +-=+=--=-⎰⎰⎰cos sin )sin (cos sin cos sin cos sin cos 2cos 22 ⑽C x x dx x x dx x x x x dx x x x +--=-=⋅-=⋅⎰⎰⎰tan cot )cos 1sin 1(sin cos sin cos sin cos 2cos 22222222 ⑾ C C dt dt tt ttt+=+⋅⋅=⋅=⋅⎰⎰90ln 90)910ln()910()910(3102 ⑿C x dx x dx x x x +==⎰⎰81587158⒀C x dx xdx x x x x dx x x x x +=-=--+-+=+-+-+⎰⎰⎰arcsin 212)1111()1111(222⒁C x x xdx dx dx x dx x x +-=+=+=+⎰⎰⎰⎰2cos 212sin 1)2sin 1()sin (cos 2⒂C x x dx x x xdx x ++=+=⎰⎰)sin 3sin 31(21)cos 3(cos 212cos cos ⒃ C e e e e dx e e e e dx e e x xx x x x x x x x ++--=-+-=------⎰⎰33333313331)33()(P.188 习题1.应用换元积分法求下列不定积分:⑴C x x d x dx x ++=++=+⎰⎰)43sin(31)43()43cos(31)43cos( ⑵ C e x d e dx xe x x x +==⎰⎰222222241)2(41⑶ C x x x d x dx ++=++=+⎰⎰|12|ln 2112)12(2112⑷ C x n x d x dx x n nn +++=++=++⎰⎰1)1(11)1()1()1(⑸Cx x xd xdx x dx xx++=-+-=-+-⎰⎰⎰3arcsin 313arcsin 3)3113131)31131(2222⑹C C x d dx x x x x +=+=+=++++⎰⎰2ln 22ln 22)32(221222323232⑺C x C x x d x dx x +--=+-⋅-=---=-⎰⎰232321)38(92)38(3231)38()38(3138 ⑻C x C x x d x x dx+--=+-⋅-=---=-⎰⎰-3232313)57(103)57(2351)57()57(5157 ⑼C x dx x dx x x +-==⎰⎰2222cos 21sin 21sin ⑽ C x x x d x dx++-=++=+⎰⎰)42cot(21)42(sin )42(21)42(sin 22ππππ⑾ 解法一:C xxx d x dxx dx+===+⎰⎰⎰2tan2cos 22cos 2cos 122解法二: ⎰⎰⎰⎰-=--=+xxdxx dx x dx x x dx 222sin cos sin cos 1)cos 1(cos 1 C x x xx d x ++-=--=⎰sin 1cot sin sin cot 2⑿解法一:利用上一题的结果,有C x C x x x d x dx +--=+--=-+--=+⎰⎰)24tan()2(21tan )2cos(1)2(sin 1ππππ 解法二: C x x xx d x dx x dx x x dx +-=+=--=+⎰⎰⎰⎰cos 1tan cos cos cos sin 1)sin 1(sin 1222 解法三:⎰⎰⎰+⋅=+=+222)12(tan 2cos )2cos 2(sin sin 1x x dxx x dx x dxC x x x d ++-=+=⎰12tan 2)12(tan 2tan 22⒀ 解法一:⎰⎰⎰---=-=)2()2sec()2sec(csc x d x dx x xdx πππC x x C x x ++-=+-+--=|cot csc |ln |)2tan()2sec(|ln ππ解法二:C x x x x d dx x x dx x xdx ++-=-===⎰⎰⎰⎰1cos 1cos ln 211cos cos sin sin sin 1csc 22C x x +-=|cot csc |ln解法三:⎰⎰++=dx x x x x x xdx cot csc )cot (csc csc cscC x x C xx x x d ++-=+++-=⎰|cot csc |ln cot csc )cot (csc解法四:⎰⎰⎰==dx x x xdx x x xdx 2cos2sin 22sin2cos 2sin 21csc 2C xC x x d x +=+-=-=⎰|2tan |ln |2cot |ln 2cot 2cot 1⒁C x x d x dx x x +--=---=-⎰⎰22221)1(11211 ⒂ C x dx x dx x x +=+=+⎰⎰2arctan 41)(4121422224⒃C x x x d x x dx +==⎰⎰|ln |ln ln ln ln⒄ C x x d x dx x x +-=---=-⎰⎰25535354)1(1101)1()1(151)1( ⒅ C x x C x x dx x dx x x ++-=++-⋅=-=-⎰⎰|22|ln 281|22|ln 221412)(1412444442483⒆C xx C x x dx x x x x dx ++=++-=+-=+⎰⎰|1|ln |1|ln ||ln )111()1( ⒇C x dx xxxdx +==⎰⎰|sin |ln sin cos cot (21)⎰⎰⎰-==x d x xdx x xdx sin )sin 1(cos cos cos 2245 C x x x x d x x ++-=+-=⎰5342sin 51sin 32sin sin )sin sin 21((22) 解法一:C x x x x d x x dx +-==⎰⎰|2cot 2csc |ln 2sin )2(cos sin解法二:C x x xd x x xdx x x dx +===⎰⎰⎰|tan |ln tan tan cos sin cos cos sin 2 解法三:⎰⎰+=xx dxx x x x dx cos sin )cos (sin cos sin 22C x x dx xxx x +-=+=⎰|cos |ln |sin |ln )sin cos cos sin ((23) C e e de e dx e e e dx xx x x x x x+=+=+=+⎰⎰⎰-arctan 1122 (24) C x x x x x x d dx x x x ++-=+-+-=+--⎰⎰|83|ln 83)83(83322222(25) C x x x dx x x x dx x x x dx x x ++-+++=+++-+=+++-+=++⎰⎰⎰2323232)1(2312|1|ln ))1(3)1(211()1(3)1(2)1()1(2(26)⎰+22ax dx解 令t a x tan =, 则C a x x C t t t a tdt a a x dx+++=++==+⎰⎰||ln |tan sec |ln sec sec 221222(27)C a x x a a x x d a a x dx ++=+=+⎰⎰21222212222322)(1)(1)(解法2 令t a x tan =, 则C ax a x C t a tdt a t a tdt a a x dx ++=+===+⎰⎰⎰222223322322sin 1cos 1sec sec )( (28)⎰-dx xx 251解 令t x sin =, 则Cx x x C t t t td t tdt dt t t t dx x x +---+--=+-+-=--===-⎰⎰⎰⎰25223221253225525)1(51)1(32)1(cos 51cos 32cos cos )cos 1(sin cos cos sin 1(29)⎰-dx xx31解 令t x =61, 则6t x =, 56t dx =C t t t t t t dt tt t t dt tt t t t dt t t t dt t t dx x x++--+++-=-++++-=-++++-=-+-=-⋅=-⎰⎰⎰⎰⎰|11|ln 26)357(6)11)1((611)1)(1(6111)(61613572246224622422533其中61x t = (30)⎰++-+dx x x 1111解 令t x =+1, 则21t x =+, tdt dx 2=,Cx x x C x x x C t t t dt t t dt t t t tdt t tdt t t dx x x +++++-=+++++-+=+++-=++-=+-=+-=+-=++-+⎰⎰⎰⎰⎰|11|ln 414|11|ln 4141|1|ln 44)1442()142(2)121(21111111122.应用分部积分法求下列不定积分: ⑴C x x x dx x x x x xdx +-+=--=⎰⎰221arcsin 1arcsin arcsin⑵C x x x dx x x x x xdx +-=⋅-=⎰⎰ln 1ln ln⑶Cx x x x x xdx x x x x x xd x x xdx x x x x d x xdx x +-+=-+=+=-==⎰⎰⎰⎰⎰sin 2cos 2sin cos 2cos 2sin cos 2sin sin 2sin sin cos 222222 ⑷ C x x x dx x x x x xd dx x x +--=+-=-=⎰⎰⎰223223412ln 121ln 211ln 21ln ⑸C x x x x x xdx x x dx x ++-=-=⎰⎰2ln 2)(ln ln 2)(ln )(ln 222 ⑹ ⎰⎰⎰+-==dx xx x x xdx xdx x 2222121arctan 21arctan 21arctan C x x x x dx x x x +--=+--=⎰)arctan (21arctan 21)111(21arctan 21222 C x x x +-+=21arctan )1(212⑺ ⎰⎰⎰+=+dx x dx x dx x x ln 1)ln(ln ]ln 1)[ln(ln C x x dx xdx x x x x x +=+⋅-=⎰⎰)ln(ln ln 1ln 1)ln(ln⑻⎰⎰--=dx xx x x x dx x 2221arcsin 2)(arcsin )(arcsin⎰-+=221arcsin 2)(arcsin x xd x x ⎰----+=dx xx x x x x 22221112arcsin 12)(arcsinC x x x x x +--+=2arcsin 12)(arcsin 22⑼⎰⎰⎰-==xdx x x x x xd xdx 23tan sec tan sec tan sec sec⎰⎰⎰+-=--=xdx xdx x x dx x x x x sec sec tan sec )1(sec sec tan sec 32 |tan sec |ln sec tan sec 3x x xdx x x ++-=⎰所以C x x x x xdx +++=⎰|)tan sec |ln tan sec 21sec 3 ⑽⎰⎰+⋅-+=+dx ax x x a x x dx a x 222222⎰+-+-+=dx ax a a x a x x )(2222222⎰⎰+++-+=dx ax a dx a x a x x 2222222)ln(2222222a x x a dx a x a x x ++++-+=⎰所以C a x x a a x x dx a x +++++=+⎰))ln((212222222 类似地可得C a x x a a x x dx a x +-+--=-⎰))ln((212222222 3.求下列不定积分:⑴ C x f a x df x f dx x f x f a aa++=='+⎰⎰1)]([11)()]([)()]([ ⑵C x f x df x f dx x f x f +=+=+'⎰⎰)(arctan )()]([11)]([1)(22⑶C x f x f x df dx x f x f +=='⎰⎰|)(|ln )()()()( ⑷ C e x df e dx x f e x f x f x f +=='⎰⎰)()()()()(4.证明:⑴ 若⎰=dx x I n n tan , ,3,2=n ,则21tan 11----=n n n I x n I 证 ⎰⎰⎰----=-=dx x dx x x dx x x I n n n n 22222tan sec tan )1(sec tan22tan tan ---=⎰n n I x d x .因为⎰⎰-----=x d x n x x d x n n n tan tan )2(tan tan tan 212,所以x n x d x n n 12tan 11tan tan ---=⎰. 从而21tan 11----=n n n I x n I . ⑵ 若⎰=dx x x n m I n m sin cos ),(,则当0≠+n m 时,),2(1sin cos ),(11n m I nm m n m x x n m I n m -+-++=+-)2,(1sin cos 11-+-++-=-+n m I nm n n m x x n m , ,3,2,=m n证 ⎰⎰+-+==x d x n dx x x n m I n m nm 11sin cos 11sin cos ),( ]sin cos )1(sin [cos 112211⎰+-+--++=dx x x m x x n n m n m ])cos 1(sin cos )1(sin [cos 112211⎰--++=-+-dx x x x m x x n n m n m ))],(),2()(1(sin [cos 1111n m I n m I m x x n n m ---++=+-所以),2(1sin cos ),(11n m I n m m n m x x n m I n m -+-++=+-, 同理可得)2,(1sin cos ),(11-+-++-=-+n m I nm n n m x x n m I n mP.199 习题1.求下列不定积分:⑴ ⎰⎰⎰-+++=-+-=-dx x x x dx x x dx x x )111(1111233 C x x x x +-+++=|1|ln 2323 ⑵ 解法一:C x x dx x x dx x x x +--=---=+--⎰⎰|3|)4(ln )3142(127222解法二:⎰⎰⎰+-++--=+--dx x x dx x x x dx x x x 12732112772211272222 ⎰⎰---++-+-=)27(41)27(123127)127(21222x d x x x x x dC x x x x +--++-=34ln 23|127|ln 212 ⑶ 解22311)1)(1(111xx CBx x A x x x x +-+++=+-+=+ 去分母得 )1)(()1(12x C Bx x x A ++++-=令1-=x ,得1=A . 再令0=x ,得1=+C A ,于是32=C . 比较上式两端二次幂的系数得 0=+B A ,从而1-=B ,因此⎰⎰⎰+---+=+dxx x x x dx x dx 2312311311⎰⎰+-++---+=dx x x dx x x x x 22112111261|1|ln 31⎰+-++--+=dx x x x x 43)21(121)1ln(61|1|ln 3122C x x x x +-++-+=312arctan 311)1(ln 6122 ⑷ 解 ⎰⎰⎰⎰+--++=+--+=+dx xx dx x x dx x x x x dx 42424224112111211)1()1(211 ⎰⎰⎰⎰++-+-=+--++=22222222221)1(211)1(211112111121x x x x d x x x x d dx x x x dx x x x⎰⎰-++-+--=2)1()1(212)1()1(2122xx x x d x x x x d C xx x x x x +++-+--=2121ln 24121arctan221C x x x x x x ++++---=1212ln 8221arctan 42222 ⑸⎰+-22)1)(1(x x dx解 令22222)1(11)1)(1(1++++++-=+-x EDx x C Bx x A x x , 解得41=A , 41-==CB , 21-==E D , 于是 ⎰⎰⎰⎰++-++--=+-dx x x dx x x x dx x x dx 22222)1(1211141141)1)(1(C x x x x x x x +++-++-+--=)1(arctan 411141arctan 41)1ln(81|1|ln 41222 C x x x x x ++-+-+-=)11arctan 21|1|(ln 4122⑹⎰⎰⎰++-+++=++-dx x x dx x x x dx x x x 222222)122(125)122(2441)122(2 其中1221)122()122()122(24222222++-=++++=+++⎰⎰x x x x x x d dx x x x ⎰⎰⎰+++=++=++)12(]1)12[(12]1)12[(4)122(1222222x d x dx x dx x x )12arctan(1)12(122+++++=x x x 参见教材P.186 例9或P.193关于k I 的递推公式⑺. 于是,有C x x x x x dx x x x ++-+++-++-=++-⎰)12arctan(251)12(1225122141)122(22222 C x x x x ++-+++=)12arctan(25)122(23522.求下列不定积分⑴⎰-x dx cos 35解 令2tan xt =,则C t t t d tdt t dt t t dx x dx+=+=+=++--=-⎰⎰⎰⎰2arctan 21)2(1)2(2141121135cos 3522222 C x+=)2tan 2arctan(21 ⑵⎰⎰⎰⎰+=+=+=+)tan 32(tan cos )tan 32(sin 3cos 2sin 2222222x xd x x dx x x dx x dxC x x x d +=+=⎰)tan 23arctan(61)tan 231()tan 23(612 ⑶ ⎰⎰⎰++-+=+=+dx xx xx x x x x xdx x dx sin cos cos sin sin cos 21sin cos cos tan 1 )sin cos )cos (sin (21)sin cos cos sin 1(21⎰⎰⎰+++=++-+=x x x x d dx dx x x x x C x x x +++=|)sin cos |ln (21另解:设⎰+=x x xdx I sin cos cos 1,⎰+=x x xdxI sin cos sin 2,则C x dx x x xx I I +=++=+⎰sin cos sin cos 21,C x x x x x x d dx x x x x I I ++=++=+-=-⎰⎰|sin cos |ln sin cos )sin (cos sin cos sin cos 21所以C x x x I x dx +++==+⎰|)sin cos |ln (21tan 11⑷⎰⎰⎰-+++-+-=-+22221)1(11xx dx x dx x x dx xx x⎰⎰⎰-++-++---+-=2221231)12(211x x dxx x dx x dx x x其中(利用教材P.185例7的结果)]1)21(512arcsin 45[21)21(451222x x x x dx x dx x x -+-+-=--=-+⎰⎰ 2222121)1(1)12(x x x x x x d x x dx x -+=-+-+=-++-⎰⎰512arcsin)21(45122-=--=-+⎰⎰x x dxxx dx所以有⎰-+dx xx x 221C x x x x x x x +-+-+--+-+--=512arcsin 231221]1)21(512arcsin 45[2122C x x x x +-++--=21432512arcsin 87 ⑸C x x x x x d xx dx ++++=-++=+⎰⎰|21|ln 41)21()21(222⑹⎰+-dx xxx 1112 解 令 x x t +-=11,则2211tt x +-=,22)1(4t tdtdx +-=,代入原式得 ⎰⎰⎰⎰---=--=+-⋅⋅⎪⎪⎭⎫ ⎝⎛-+=+-dt t t dt t t dt t t t t t dx x xx 222222222222)1(114)1(4)1(411111⎰⎰⎰⎰-+-++--=---=dt t t t dt t dt t dt t ]12)1(1)1(1[114)1(141142222222C t t t t dt t t dt t +++---+=-++--=⎰⎰1111|11|ln ])1(1)1(1[112222 C xx x x +---+=221|11|ln总 练 习 题求下列不定积分: ⑴C x x x dx x xx dx xx x +--=--=--⎰⎰-4312134541121414334132454)2(12⑵]11arcsin [21arcsin 21arcsin 2222⎰⎰⎰--==dx x x x x dx x dx x x 其中)2sin 21(2122cos 1cos cos sin 1222t t dt t dt t t t dx x x -=-==-⎰⎰⎰)1(arcsin 212x x x --=所以]11arcsin [21arcsin 222⎰⎰--=dx xx x x dx x xC x x x x x +---=)]1(arcsin 21arcsin [2122 C x x x x x +-+-=22141arcsin 41arcsin 21 ⑶⎰+xdx 1解 令u x =,则udu dx 2=C u u du uu udu xdx ++-=+-=+=+⎰⎰⎰|)1|ln (2)111(2121 C x x ++-=|)1|ln (2⑷⎰⎰⎰⎰===xx x x de x x d x e dx x x e dx x e sin sin sin sin sin 2sin sin 2cos sin 22sin C x e C e x e x d e x e x x x x x +-=+-=-=⎰)1(sin 2)sin (2)sin sin (2sin sin sin sin sin⑸C x e C e u e du u e u x dx e x u u u x+-=+-==⎰⎰)1(2)(22)(令 ⑹C x x d x x x dx x xdx +-=--=-=-⎰⎰⎰1arcsin )1(1111112222 解法二:令t x sec =,C xC t dt t t t t x xdx +=+==-⎰⎰1arccos tan sec tan sec 12⑺⎰⎰⎰++=+-=+-x x x x d dx x x x x dx x x sin cos )sin (cos sin cos sin cos tan 1tan 1C x x ++=|sin cos |lnC x dx x dx x x +-=-=+-⎰⎰|)4cos(|ln )4tan(tan 1tan 1ππ ⑻ C x x x dx x x x dx x x x +-----=-+-+-=--⎰⎰23232)2(123|2|ln )2(2)2(3)2()2( ⑼C x x x d x xdx x x dx ++=+==⎰⎰⎰32224tan 31tan tan )tan 1(cos sec cos ⑽ ⎰⎰⎰-==dx x dx x dx x 2224)22cos 1()(sin sin⎰⎰++-=+-=dx x x dx x x )24cos 12cos 21(41)2cos 2cos 21(412 C x x x C x x x x ++-=+++-=4sin 3212sin 4183)84sin 22sin (41 ⑾ ⎰+--dx x x x 43523 解⎰⎰-+-=+--dx x x x dx x x x 223)2)(1(5435令22)2(21)2)(1(5-+-++=-+-x C x B x A x x x 去分母得:)1()2)(1()2(52++-++-=-x C x x B x A x 解得:32-=A ,32=B ,1-=C 所以⎰⎰⎰⎰---++-=+--dx x dx x dx x dx x x x 223)2(121321132435 C x x x +-++-=21|12|ln 32 ⑿⎰+dx x )1arctan(解 令u x =+1,du u dx )1(2-=⎰⎰⎰⎰-⋅=-⋅=+du u du u u du u u dx x arctan 2arctan 2)1(2arctan )1arctan(122)1ln(arctan 2]arctan )1[(C u u u u u u +++--+= C x x x x x ++++-+=)22ln()1arctan(⒀ ⎰⎰⎰+-=+-+=+dx x x x dx x x x x dx x x )22(2222433433747 C x x ++-=)2ln(214144 另解:C x x dx x dx x x x dx x x ++-=+-=+⋅=+⎰⎰⎰)2ln(2141)221(4122444443447 ⒁⎰++dx x x x2tan tan 1tan 解 令u x =tan⎰⎰⎰⎰++-+=+++=++du u u du u du u u u u dx x x x 222221111111tan tan 1tanC x x C u u ++-=++-=31tan 2arctan32312arctan32arctan⒂ ⎰⎰-+---=-dx x x x dx x x 10021002)1(1)1(2)1()1( C x x x +-+---=979899)1(971)1(491)1(991 ⒃⎰⎰⎰-+-=-=dx x x xx x d x dx x x 2211arcsin 1arcsin arcsin C xx x x +-+--=|11|ln arcsin 2⒄⎰⎰⎰--+=--+=-+2)]1ln()1[ln(21)]1ln()1[ln(11lndx x x dx x x x dx x x x C x xxx dx x x x x x x ++-+-=-++---+=⎰11ln 21)1111(21)]1ln()1[ln(21222⒅⎰⎰⎰+==x d xx dx xx dx xx tan tan tan 1cos tan 1cos sin 1247C x x ++=)tan 511(tan 22⒆ ⎰⎰⎰⎰+-++=+-+=+-dx x x e dx x e dx x x x e dx x x e xx x x22222222)1(21)1(21)11( C xe dx x e x e dx x e x d e dx x e x x x x x x ++=+-+++=+++=⎰⎰⎰⎰2222221111111 ⒇ ⎰=dx uv I n n ,x b a u 11+=,x b a v 22+=解 ][221211⎰⎰⎰--===dx v b u n u v b u d v b dx uv I n nn n n ])([2][21122111121⎰⎰---+-=-=dx uv b a b a v b n u v b dx u uv b n u v b n nn n ])([21122111----=n n nI b a b a n I nb u v b 所以])([)12(2112211---+=n n n I b a b a n u v b n I。
数学分析教案华东师大版一、教学目标通过本课程的学习,学生应该能够:1.熟悉数学分析的基本概念和基本原理;2.掌握数学分析中的常用方法和技巧;3.培养数学分析的思维方式和解决问题的能力;4.培养学生的数学思维和创造性思维。
二、教学内容本教案主要包括以下内容:1.函数、极限与连续性–函数的定义和性质–极限的定义和性质–连续函数的定义和性质–极限存在的判定方法–无穷小量与无穷大量2.一元函数的微分学–导数的定义和性质–导数的几何意义和物理意义–某类函数的导数–高阶导数与导数的运算法则–隐函数与参数方程的求导公式3.一元函数的积分学–积分的定义和性质–函数的原函数与不定积分–定积分的定义和性质–定积分的计算方法–积分中值定理4.多元函数的微分学–多元函数的定义和性质–多元函数的极限和连续性–偏导数和全微分–隐函数与参数方程的求导公式–多元函数的极值与最值问题5.多元函数的积分学–重积分的定义和性质–二重积分的计算方法–三重积分的计算方法–曲线与曲面的面积与弧长–应用于物理和几何的多重积分三、教学方法1.讲授法:通过讲解基本概念和原理,逐步引导学生掌握数学分析的基本知识;2.示例法:通过实际例子和问题,帮助学生理解和应用数学分析的方法和技巧;3.探究法:引导学生通过自主思考和探索,培养解决问题的能力和创造性思维;4.实践法:通过实际应用和实验,帮助学生将数学分析知识应用到实际问题中。
四、教学工具在教学过程中,我们将使用以下工具:1.教材:华东师大版《数学分析》教材;2.黑板和白板:用于讲解和演示数学分析的概念和方法;3.计算器:用于计算和验证数学分析中的计算步骤;4.电脑和投影仪:用于展示教材、图片和视频资料;5.实验器材:用于进行一些实际应用和实验。
五、教学评价为了评价学生的学习效果和掌握程度,我们将采用以下方式进行评价:1.平时成绩:包括作业完成情况、课堂参与度等;2.期中考试:对学生的理论知识和基本应用进行考核;3.期末考试:对学生的综合应用和解决问题能力进行考核;4.实验报告和小组项目:对学生的实践能力和团队合作能力进行考核;5.学习笔记和讨论记录:对学生的学习态度和思维能力进行考核。
§1 实 数1、设a 为有理数,x 为无理数,试证明(1)x a +为无理数; (2)当0≠a 时,ax 是无理数。
证明:用反证法:(1)若x a +为有理数,由条件可得-a 也为有理数,故x x a a =++-)()(为有理数,此与条件矛盾,所以x a +为无理数。
(2)若ax 为有理数,由条件可得1-a 也为有理数,所以x ax a =⋅-)(1为有理数,此与条件矛盾,所以ax 为无理数。
2、试在数轴上表示出下列不等式的解: (1)0)1(2>-x x ;(2)31-<-x x ;(3)23121-≥---x x x ;(4)13≥+x x 。
解:(1)由⎩⎨⎧<<-<⎩⎨⎧⎩⎨⎧>-<>⇒>->⇒>-1101100100)1(22x x x x x x x x x 或或如图2-1; (2)两边平方得29612)3()1(22<⇒+-<+-⇒-<-x x x x x ,如图2-2;(3)两边平方得1210)12)(1(223)12)(1(223==⇒≥---⇒-≥----x x x x x x x x 且,此为矛盾,故解集为空集;(4)用图形法给出数轴表示,如图2-3图2-1 图2-2 图2-3 3、设R b a ∈,.证明:若对任何正数ε有ε<-b a ,则b a =.证 用反证法.若b a ≠,则令00>-=b a ε,由已知得b a b a -=<-0ε,此为矛盾.故b a =.4、设0≠x ,证明21≥+xx ,并说明其中等号何时成立。
证明:只需证明0>x 时结论成立。
因为0>x ,故可令2yx =,由210211222≥+⇒≥-+=⎪⎪⎭⎫ ⎝⎛-x x y y y y ,当1±=x 时,等号成立。
5、证明:对任何实数R x ∈有(1)121≥-+-x x ;(2)2321≥-+-+-x x x 。
【史上最强】华东师范大学《数学分析》第四第五版上下册精讲精练华东师范大学的《数学分析》是大多数数学专业学生必修的一门课程,也是数学基础很重要的一门课程。
这门课程涉及到了微积分、实变函数、级数和微分方程等重要的数学概念和方法。
本文主要介绍华东师范大学《数学分析》第四第五版上下册的精讲精练内容。
这两册书主要讲授了微积分和实变函数的部分内容,其中包括单变量函数、多元函数、微积分的基本定理、微分学基本理论、级数理论和微分方程等内容。
一、单变量函数在单变量函数的学习中,我们先要学习函数的基本概念:定义域、取值域、函数的表示方法、函数分类、函数的有界性和函数的极限。
1.1 定义域与取值域定义域是指函数自变量可以取到的所有实数值的集合,而取值域则表示函数所有可能的实数输出值的集合。
在单变量函数中,定义域和取值域的关系是非常重要的。
根据函数定义域和取值域的不同,我们可以将单变量函数分为多种类型,例如正弦函数、余弦函数、指数函数、对数函数和多项式函数等。
1.2 函数的表示方法在学习单变量函数中,我们还需要掌握函数的表示方法。
一元函数的一般表示方法是f(x),其中x是自变量,f(x)是因变量。
在实际应用中,一元函数的式子可能会更加复杂,包括三角函数、指数函数、对数函数等。
1.3 函数分类在单变量函数中,函数可以分为几种类型。
其中最常见的包括连续函数、可导函数和可积函数。
连续函数是指在其定义域上连续的函数,可导函数则意味着函数在其某个点的导数存在,而可积函数则表示整个函数的积分收敛。
1.4 函数的有界性在学习单变量函数中,我们还需要掌握函数的有界性。
一个函数是有界的,当且仅当在其定义域上存在一个上界和下界,使得函数值在这些上下界之间。
没有上界或下界的函数被称为无界函数。
1.5 函数的极限在单变量函数中,我们还需要学习函数的极限。
在学习极限的时候,我们需要掌握极限的定义,极限的性质和相关的定理。
特别地,拉格朗日中值定理和柯西中值定理对于极限的理解具有重要的意义。