五年级下册奥数讲义-09逻辑推理 通用版 无答案
- 格式:doc
- 大小:51.00 KB
- 文档页数:4
小学奥数思维训练-逻辑推理问题学校:___________姓名:___________班级:___________考号:___________一、填空题1.填数使下列竖式成立:(1)(2)二、排序题2.200米赛跑,张强比李军快0.2秒,王明的成绩是39.4秒,赵刚的成绩比王明慢0.9秒,但比张强快0.1秒,林林比张强慢3秒,请你给这五人排出名次来。
三、解答题3.有三个和尚,一个讲真话,一个讲假话,另外一个有时讲真话,有时讲假话。
一天,一位智者遇到这三个和尚,他先问左边的那个和尚:“你旁边的是哪一位?”和尚回答说“讲真话的。
”他又问中间的和尚:“你是哪一位?”和尚答:“我是半真半假的。
”他最后问右边的和尚:“你旁边是哪一位?”答:“讲假话的。
”根据他们的回答,智者马上分清了他们,你能分清吗?4.一次全校数学竞赛,A、B、C、D、E五位同学取得了前五名,发奖后有人问他们的名次,回答是:A说:“B是第三名,C是第五名.”B说:“D是第二名,E是第四名.”C说:“A是第一名,E是第四名.”D说:“C是第一名,B是第二名.”E说:“D是第二名,A是第三名.”最后,他们都补充说:“我们的话半真半假.”请你判断一下他们每个人的名次.5.老师有一黑两白三顶帽子,给两个学生看后,让他们闭上眼睛,从中取出两顶给他们戴上,然后让他们睁开眼睛,互相看清对方戴的帽子,并立即说出自己头上戴的帽子是什么颜色,两位同学都不能立即说出,请问你知道这两位学生戴的各是什么颜色的帽子吗?6.曾实、张晓、毛梓青在一起,一位是工程师、一位是医师、一位是教师。
现在只知道:(1)毛梓青比教师年龄大;(2)曾实和医师不同岁;(3)医师比张晓年龄小。
你能确定谁是工程师?谁是医师?谁是教师吗?7.某公安人员需查清甲、乙、丙三人谁先进办公室,三人口供如下:甲:丙第二个进去,乙第三个进去。
乙:甲第三个进去,丙第一个进去。
丙:甲第一个进去,乙第三个进去。
1. 五年级奥数逻辑推理教师版2. 培养学生的逻辑推理能力,掌握解不同题型的突破口3. 能够利用所学的数论等知识解复杂的逻辑推理题逻辑推理作为数学思维中重要的一部分,经常出现在各种数学竞赛中,除此以外,逻辑推理还经常作为专项的内容出现在各类选拔考试,甚至是面向成年人的考试当中。
对于学生学习数学来说,逻辑推理既有趣又可以开发智力,学生自主学习研究性比较高。
本讲我们主要从各个角度总结逻辑推理的解题方法。
一、列表推理法逻辑推理问题的显著特点是层次多,条件纵横交错.如何从较繁杂的信息中选准突破口,层层剖析,一步步向结论靠近,是解决问题的关键.因此在推理过程中,我们也常常采用列表的方式,把错综复杂的约束条件用符号和图形表示出来,这样可以借助几何直观,把令人眼花缭乱的条件变得一目了然,答案也就容易找到了.二、假设推理用假设法解逻辑推理问题,就是根据题目的几种可能情况,逐一假设.如果推出矛盾,那么假设不成立;如果推不出矛盾,而是符合题意,那么假设成立.解题突破口:找题目所给的矛盾点进行假设三、体育比赛中的数学对于体育比赛形式的逻辑推理题,注意“一队的胜、负、平”必然对应着“另一队的负、胜、平”。
有时综合性的逻辑推理题需要将比赛情况用点以及连接这些点的线来表示,从整体考虑,通过数量比较、整数分解等方式寻找解题的突破口。
四、计算中的逻辑推理能够利用数论等知识通过计算解决逻辑推理题.模块一、列表推理法【例 1】 刘刚、马辉、李强三个男孩各有一个妹妹,六个人进行乒乓球混合双打比赛.事先规定:兄妹二人不许搭伴.第一盘:刘刚和小丽对李强和小英;第二盘:李强和小红对刘刚和马辉的妹妹.问:三个男孩的妹妹分别是谁?例题精讲知识点拨教学目标逻辑推理【考点】逻辑推理 【难度】2星 【题型】解答【解析】 因为兄妹二人不许搭伴,所以题目条件表明:刘刚与小丽、李强与小英、李强与小红都不是兄妹.由第二盘看出,小红不是马辉的妹妹.将这些关系画在左下表中,由左下表可得右下表. 李强马辉刘刚小丽小红小英××××李强马辉刘刚小丽小红小英×√×××××√√刘刚与小红、马辉与小英、李强与小丽分别是兄妹.【答案】刘刚与小红、马辉与小英、李强与小丽分别是兄妹【巩固】 王文、张贝、李丽分别是跳伞、田径、游泳运动员,现在知道:⑴张贝从未上过天;⑵跳伞运动员已得过两块金牌;⑶李丽还未得过第一名,她与田径运动员同年出生.请根据上述情况判断王文、张贝、李丽各是什么运动员?【考点】逻辑推理 【难度】2星 【题型】解答【解析】 为了能清楚地找到所给条件之间的关系,我们不妨运用列表法,列出下表,在表中“√”表示是,“×”表示不是,在任意一行或一列中,如果一格是“√”,可推出其它两格是“×”由⑴⑶可知张贝、李丽都不是跳伞运动员,可填出第一行,即王文是跳伞运动员;由⑶可知,李丽也不是田径运动员,可填出第三列,即李丽是游泳运动员,则张贝是田径运动员.【答案】王文是跳伞运动员,李丽是游泳运动员,张贝是田径运动员【巩固】 李波、顾锋、刘英三位老师共同担负六年级某班的语文、数学、政治、体育、音乐和图画六门课的教学,每人教两门.现知道:⑴ 顾锋最年轻;⑵ 李波喜欢与体育老师、数学老师交谈;⑶ 体育老师和图画老师都比政治老师年龄大;⑷ 顾锋、音乐老师、语文老师经常一起去游泳;⑸ 刘英与语文老师是邻居.问:各人分别教哪两门课程?【考点】逻辑推理 【难度】2星 【题型】解答【解析】 李波教语文、图画,顾锋教数学、政治,刘英教音乐、体育.由⑴⑶⑷推知顾锋教数学和政治;由⑵推知刘英教体育;由⑶⑸推知李波教图画、语文.【答案】顾锋教数学和政治,刘英教音乐、体育,李波教图画、语文【巩固】 王平、宋丹、韩涛三个小学生都是少先队的干部,一个是大队长,一个是中队长,一个是小队长.一次数学测验,这三个人的成绩是:⑴韩涛比大队长的成绩好.⑵王平和中队长的成绩不相同.⑶中队长比宋丹的成绩差.请你根据这三个人的成绩,判断一下,谁是大队长呢?【考点】逻辑推理 【难度】2星 【题型】解答【解析】 根据条件⑵和⑶,王平和中队长的成绩不相同,中队长比宋丹的成绩差.,可以断定,王平不是中队长,宋丹也不是中队长,只有韩涛当中队长了.王平和宋丹两人谁是大队长呢?由⑴和⑶,韩涛比大队长的成绩好,中队长比宋丹的成绩差,可以推断出按成绩高低排列的话,宋丹的成绩比中队长(韩涛)的成绩好,韩涛的成绩比大队长的成绩好.这样,宋丹、韩涛就都不是大队长,那么,大队长肯定是王平.【答案】王平【例 2】张明、席辉和李刚在北京、上海和天津工作,他们的职业是工人、农民和教师,已知:⑴张明不在北京工作,席辉不在上海工作;⑵在北京工作的不是教师;⑶在上海工作的是工人;⑷席辉不是农民.问:这三人各住哪里?各是什么职业?【考点】逻辑推理【难度】2星【题型】解答【解析】这道题的关系要复杂一些,要求我们通过推理,弄清人物、工作地点、职业三者之间的关系.三者的关系需要两两构造三个表,即人物与地点,人物与职业,地点与职业三个表.我们先将题目条件中所给出的关系用下面的表来表示,由条件⑴得到表1,由条件⑵、⑶得到表2,由条件⑷得到表3.因为各表中,每行每列只能有一个“√”,所以表2可填全为表5.由表5知农民在北京工作,又知席辉不是农民,所以席辉不在北京工作,可以将表1可填全完为表4由表4和表5知得到:张明住在上海,是工人;席辉住在天津,是教师;李刚住在北京,是农民.方法二:由题目条件可知:席辉不在上海工作,而在上海工作的是工人,所以席辉不是工人,又不是农民,那么席辉只能是教师,不在北京工作,就只能是在天津工作,那么张明在上海工作,是工人。
逻辑推理(二)计算逻辑在逻辑推理过程中,需要进行数字(或数)的计算来完成的逻辑问题,如数字问题,体育比赛的得分、场数、名次问题,在考试中的得分等等问题,我们称这类问题为计算逻辑.例1在一座办公大楼里,有30名办事员.某天上班有一名办事员没有和其他办事员见面.请问这一天在大楼里办公的人最多能遇到几位同事?随堂练习1某次集会共到了68人,每人头上都戴了一顶帽子,颜色分红、蓝两种,任意两个到会的人中至少有一个人戴红帽子.问戴红帽子的人数比戴蓝帽子的人数多了多少个人?例2如图,六张四位数的纸片互相纵横交错叠在一起.其中有且只有一个数是完全平方数.这个数是多少?例3伟大的物理学家爱因斯坦A年B月14日生于德国乌尔姆(UIM),父母都是犹太人,他是相对论的创立者,诺贝尔物理奖获得者.C年4月D日逝世于美国,享年E岁.请将下列给出的一组数正确的填入A、B、C、D、E中.(1)1955 (2)3 (3)1879 (4)76 (5)18随堂练习2 A年B月16日在德意志的波恩附近,一件破旧的阁楼上诞生了以后影响百年的音乐奇才——贝多芬.他以非凡的英雄气概,与残酷的命运抗争,以无与伦比的意志和才华写出了无数欢乐的、悲壮的、田园诗一般温馨的不朽乐章.在一个雷雨交加的夜晚,他圆睁双目注视着闪电,孤独地离开了人世.一个陌生人替他合上了眼睛,时年C年3月D日,贝多芬享年E岁.请将下列给出的一组数正确的填入A、B、C、D、E中.(1)26 (2)57 (3)1827 (4)12 (5)1770例4 10个好朋友彼此住得很远,没有电话,只能靠写信互通消息.现在这10个人每人都知道一条好消息,这10条好消息彼此不同,为使这10个人都知道所以的好消息,只能通过相互写信通报.请问至少要让邮递员传送几封信?例5甲、乙、丙、丁四个同学进行象棋比赛,每两个都比赛一场,规定胜者得2分,平局各得1分,输者得0分.结果甲得第一,乙、丙并列第二,丁最后一名,那么乙得分.随堂练习3五个选手进行象棋比赛,每两个人之间都要赛一盘.规定胜一盘得2分,平一盘各得1分,输一盘不得分.已知比赛后,其中4位选手共得16分,则第5位选手得了分.例6 A、B、C、D、E五对夫妇聚会,见面时相互握手问候.A先生好奇地私下向每个人(包括他太太)刚才握手的次数,得到的回答使他惊奇.9个人中竟然没有两个人握手次数相同的.A太太握手次数是多少?(一对夫妇之间不握手)随堂练习4四所小学,每所小学有两只足球队.这八支足球队进行友谊比赛.规定本校两支球队不进行比赛,不同学校的任意两队之间比赛一场.比赛进行到某一阶段后(还没有赛完).A校第一队队长发现,其他七支球队已赛过的场数互不相同.问这时A校第二队赛了几场?练习题1.有9张纸牌,分别为1至9.A、B、C、D四人取牌,每人取两张.现已知A取两张牌之和是10;B取两张牌之差是1;C取两张牌之积是24;D取两张牌之商是3.剩下的一张牌是几?2.四名棋手每两名选手都要比赛一局,规则规定胜一局得2分,平一局得1分,负一局得0分.比赛结果,没有人全胜,并且各人的总分都不相同.那么至多可以有多少个平局?3.甲、乙、丙三名运动员囊括了全部比赛项目的前三名,他们的总分分别为8、7和17分.甲得了一个第一名,已知各个比赛项目分数相同,且第一名得分不低于二、三名得分的和.那么,比赛共有几个项目,甲每项得分分别是几分?4.三人打乒乓球,每场两人,输者退下换成另一人.这样继续下去.在甲打了9场,乙打了6场时,丙最多打了______场.5.在一个庆典晚会上,男女嘉宾共69人.出现了一个非常有趣的情况:每位女士认识的男士的人数各不相同,而且组成连续的自然数,最少的认识16位男士,最多的只有两位男士不认识.这次晚会上共有女嘉宾______人.6.一些士兵排成一列横队,第一次从左到右1至4报数,第二次从右至左1至6报数,两次都报3的恰有5名,这列士兵最多有______名.7.共有四人进行跳远、百米、铅球、跳高四项比赛.规定每个单项第一名记5分,第二名记3分,第三名记2分,第四名记1分,每个单项比赛中四人得分互不相同.总分第一名得17分,其中跳高得分低于其他项的得分;总分第三名得11分,其中跳高得分高于其他项的得分.问总分第二名的铅球得分是多少?8.在一次射击练习中,甲、乙、丙三位战士各打了四发子弹,全部中靶.其命中情况如下:(1)每人四发子弹所命中的环数各不相同;(2)每人四发子弹所命中的总环数均为17环;(3)乙有两发命中的环数分别与甲命中的环数一样;(4)甲与丙只有一发环数相同;(5)每人每发子弹的最好成绩不超过7环.问:甲与丙命中的相同环数是几环?9.12个队参加一次足球比赛,每两个队都要比赛一场,每场比赛中,胜队得3分,负队得0分,平局各得1分.比赛完毕后,获第三名和第四名的两个队得分最多可以相差______分.10.有A、B、C、D四支足球队进行单循环比赛,共要比赛______场.规定:胜一场得2分,平一场得1分,负一场得0分.全部比赛结束后,A、B两队的总分并列第一名,C队第二名,D队第三名,C队最多得______分.11.一种游戏,每一局胜则得6分,平则得5分,负则得零分,比赛足够多局,但无论比赛多少局,不能得到的分数共有多少个?。
五年级奥数集训专题讲座——逻辑推理解答推理问题常用的方法有:排除法、假设法、反证法。
一般可以从以下几方面考虑:1 、选准突破口,分析时综合几个条件进行判断。
2、根据题中条件,在推理过程中,不断排除不可能的情况,从而得出要求的结论。
3、对可能出现的情况作出假设,然后再根据条件推理,如果得到的结论和条件不矛盾,说明假设是正确的。
4、遇到比较复杂的推理问题,可以借助图表进行分析。
例1:有三个小朋友在谈论谁做的好事多。
冬冬说:“兰兰做的比静静多。
”兰兰说:“冬冬做的比静静多”静静说:“兰兰做的比冬冬少。
”这三位小朋友中,谁做的好事最多?准做的好事最少?【思路导航】我们用“ > ”来表示每个小朋友之间做好事多少的关系。
兰兰>静静冬冬>静静冬冬>兰兰所以,冬冬>兰兰>静静,冬冬做的好事最多,静静做的最少答:冬冬做的最多,静静做的最少。
【疯狂操练】( l )卢刚,丁飞和陈瑜一位是工程师,一位是医生,一位是飞行员。
现在只知道:卢刚和医生不同岁;医生比丁飞年龄小;陈瑜比飞行员年龄大。
请问,谁是工程师,谁是医生,谁是飞行员?解:卢刚和医生不同岁,那么卢刚是工程师或者飞行员。
医生比丁飞年龄小;那么医生只能是卢刚或者陈瑜。
这里可以知道,医生就是陈琦。
(卢刚和陈瑜不同岁;陈瑜比丁飞年龄小)陈琦比飞行员年龄大。
那么飞行员是卢刚,工程师就是丁飞了。
〔 2 )小李、小徐和小张是同学,大学毕业后分别当了教师,数学家和工程师。
小张年龄比工程师大;小李和数学家不同岁;数学家比小徐年龄小。
想一想,谁是教师,谁是数学家,谁是工程师。
解:(1)此题解答的关键在于抓住“小张年龄比工程师大;小李和数学家不同岁;数学家比小徐年龄小”这一条件来推理.①小张年龄比工程师大→小张不是工程师,②②小李和数学家不同岁→小李不是数学家,③③数学家比小徐年龄小→小徐也不是数学家.④由②③→小张是数学家.进一步推出小徐是教师,小李是工程师.解:(2)小张比工程师年龄大,说明小张不是工程师,小李和数学家不同岁,说明小李不是数学家,数学家比小徐年龄小,说明小徐也不是数学家,而小李和小徐都不是数学家,那只有小张是数学家了.然而从小张比工程师年龄大,又比小徐年龄小这两句话可以看出小徐不是工程师,那只有小徐是教师,小李是工程师了.因此,小徐是教师,小张是数学家,小李是工程师.( 3 )江波、刘晓、吴萌三位老师,其中一位教语文,一位教数学,一位教英语。
奥数部分——简单的逻辑推理(一)1、A、B、C、D四人,已知B不是最高的,但他比A、D高,而A不比D高,请把他们按高矮排列。
2、甲、乙、丙、丁四人同时参加了读书竞赛,赛后他们各自预测名次,甲说:“丙第一名,我第三名。
”乙说:“我第一名,丁第四名。
”丙说:“丁第二名,我第三名。
”丁没说话。
最后成绩公布时,发现他们的预测都只对了一半。
那么,这次竞赛他们的名次分别是什么?3、有一次上课坐在一个小组的三个人中有人讲话,小张指责小王和小李:“你们都在说谎。
”小李却说:“小张正在说谎。
”小王则说:“小李正在说谎。
”他们中只有1个人讲的是真话,试问:谁讲的是真话,谁讲的是假话?4、甲、乙、丙、丁四位同学的校服上印有不同的号码。
赵同学说:甲是2号,乙是3号。
钱同学说:丙是2号,乙是4号。
孙同学说:丁是2号,丙是3号。
李同学说:丁是1号,乙是3号。
已知赵、钱、孙、李每人都说对了一半,那么丙是几号?5、甲、乙、丙三人对晓明的藏书数目作了一个估计,甲说:他至少有1000本书。
乙说:他的书不到1000本。
丙说:他最少有1本书。
这三个人的估计中只有一句是对的。
晓明究竟有多少本书?6、小利、小江、小敏、小磊四个同学,有一个同学在英语竞赛中获奖,其余同学问他们谁是获奖者,小利说:我不是,小江说:是小磊,小敏说:是小江,小磊说:不是我。
他们当中只有一个人没有说真话,那么获奖者是谁?7、有三名学生在看1、2、3号运动员进行“羽毛球冠争夺赛。
”赛前,对于谁会得“冠”称号,三名学生都说了两句话:甲说:不是2号,是3号。
乙说:不是2号,是1号。
丙说:不是3号,是2号。
比赛结果表明,他们的话有一人全对,有一人对一半错一半,另一人全错。
请你想一想,冠是谁?8、有三位老师比年龄,他们每人说的3句话中有2句是对的,请你分析一下他们各有多少岁?刘老师:我22岁,比小陈小2岁,比小李大1岁。
陈老师:我不是年龄最小的,小李和我相差3岁,小李是25岁。
【最新整理,下载后即可编辑】第9讲逻辑推理(三)一、教学目标1.逻辑推理的解题思路与基本方法:列表、假设、对比分析、数论分析法等;2.培养学生的逻辑推理能力,掌握解不同题型的突破口;3.能够利用所学的数论等知识解复杂的逻辑推理题。
二、例题精选【例1】李波、顾锋、刘英三位老师共同担负六年级某班的语文、数学、政治、体育、音乐和图画六门课的教学,每人教两门.现知道:⑴顾锋最年轻;⑵李波喜欢与体育老师、数学老师交谈;⑶体育老师和图画老师都比政治老师年龄大;⑷顾锋、音乐老师、语文老师经常一起去游泳;⑸刘英与语文老师是邻居.问:各人分别教哪两门课程?【巩固1】甲、乙、丙、丁四个人的职业分别是教师、医生、律师、警察.已知:⑴教师不知道甲的职业;⑵医生曾给乙治过病;⑶律师是丙的法律顾问(经常见面);⑷丁不是律师;⑸乙和丙从未见过面.求四人的职业。
【例2】甲、乙、丙、丁每人只会中、英、法、日四种语言中的两种,其中有一种语言只有一人会说.他们在一起交谈可有趣啦:⑴乙不会说英语,当甲与丙交谈时,却请他当翻译;⑵甲会日语,丁不会日语,但他们却能相互交谈;⑶乙、丙、丁找不到三人都会的语言;⑷没有人同时会日、法两种语言.请问:甲、乙、丙、丁各会哪两种语言?【巩固2】宝宝、贝贝、聪聪每人有两个外号,人们有时以“数学博士”、“短跑健将”、“跳高冠军”、“小画家”、“大作家”和“歌唱家”称呼他们,此外:⑴数学博士夸跳高冠军跳的高;⑵跳高冠军和大作家常与宝宝一起看电影;⑶短跑健将请小画家画贺年卡;⑷数学博士和小画家关系很好;⑸贝贝向大作家借过书;⑹聪聪下象棋常赢贝贝和小画家。
问:宝宝、贝贝、聪聪各有哪两个外号吗?【例3】六年级四个班进行数学竞赛,小明猜想比赛的结果是:3班第一名,2班第二名,1班第三名,4班第四名;小华猜想比赛的结果是:2班第一名,4班第二名,3班第三名,1班第四名;结果只有小华猜到的4班为第二名是正确的.那么这次竞赛的正确名次是?【巩固3】甲、乙、丙、丁、戊五名同学参加推铅球比赛,通过抽签决定出赛顺序.在未公布顺序前每人都对出赛顺序进行了猜测.甲猜:乙第三,丙第五.乙猜:戊第四,丁第五.丙猜:甲第一,戊第四.丁猜:丙第一,乙第二.戊猜:甲第三,丁第四.老师说每人的出赛顺序都至少被一人所猜中,则正确的出赛顺序是?【例4】一次数学考试,共六道判断题.考生认为正确的就画“√”,认为错误的就画“ ”.记分的方法是:答对一题给2分;不答的给1分;答错的不给分.已知A、B、C、D、E、F、G七人的答案及前六个人的得分记录在表中,请在表中填出G的得分.并简单说明你的思路.【巩固4】学校新来了一位老师,五个学生分别听到如下的情况:⑴是一位姓王的,中年,女老师,教语文课;⑵是一位姓丁的,中年,男老师,教数学课;⑶是一位姓刘的,青年,男老师,教外语课;⑷是一位姓李的,青年,男老师,教数学课;⑸是一位姓王的,老年,男老师,教外语课.他们每人听到的四项情况中各有一项正确.问:真实情况如何?【例5】大刘因病在家休息了几天,这期间的气候是:⑴下了8次雨,时间是上午或下午;⑵当下午下雨时,当天上午是晴天;⑶有9个下午是晴天;⑷有13个上午是晴天。
奥数真题推理题及答案解析在奥数竞赛中,推理题一直是让学生头疼的一部分。
这些题目要求学生通过分析、推理和逻辑思维来解决问题,常常需要一定的观察力和抽象思维能力。
在本文中,我们将探讨几个经典的奥数真题推理题,并提供详细的解析过程。
题目一:小明有一本书,他一共读了5页。
如果他每天读的页数都是连续的,而且每天读的页数都比前一天多2页。
那么,他读完这本书需要多少天?解析:这个问题涉及到连续数列的求和问题。
我们可以用数学公式来解决。
假设小明第一天读的页数为x,则第二天读的页数为x+2,第三天为x+4,以此类推。
因此,我们可以列出等差数列的求和公式,计算小明读完书需要的天数:5 = (第一天读的页数 + 最后一天读的页数)* 天数 / 25 = (x + x + (5-1)*2 ) * 5 / 25 = (2x + 8 ) * 5 / 210 = 2x + 82x = 2x = 1所以,小明第一天读的页数为1,他需要5天时间读完这本书。
接下来我们看看另一道推理题。
题目二:有5个人坐在一排,每个人都穿着不同颜色的衣服。
以下提供了一些线索,请你找出每个人穿着的衣服颜色。
1. A不穿红色衣服,B不穿蓝色衣服2. C和D都不穿绿色衣服3. E的衣服颜色和D的不同解析:这道题目需要我们通过逻辑推理来找到每个人穿着的衣服颜色。
第一条线索告诉我们A不穿红色衣服,B不穿蓝色衣服。
所以,A和B 不可能穿红色或蓝色衣服。
根据第二条线索,C和D都不穿绿色衣服,那么C和D可能穿红色衣服或蓝色衣服。
第三条线索告诉我们E的衣服颜色和D的不同,也就是说E不会穿D穿的颜色。
综上所述,我们可以得出以下结论:A穿什么颜色的衣服我们不知道,但不可能是红色或蓝色;B穿什么颜色的衣服我们不知道,但不可能是红色或蓝色;C和D可能穿红色或蓝色衣服,但不穿绿色;E不会穿D穿的颜色。
因此,根据题目的描述和逻辑推理,我们可以得出以下答案:A穿绿色衣服;B穿绿色衣服;C穿红色或蓝色衣服;D穿红色或蓝色衣服;E穿绿色衣服。