郑小倩4-2 根轨迹绘制的基本法则
- 格式:pptx
- 大小:2.10 MB
- 文档页数:35
4.2 绘制根轨迹的基本法则本节讨论根轨迹增益*K (或开环增益K )变化时绘制根轨迹的法则。
熟练地掌握这些法则,可以帮助我们方便快速地绘制系统的根轨迹,这对于分析和设计系统是非常有益的。
法则1 根轨迹的起点和终点:根轨迹起始于开环极点,终止于开环零点;如果开环零点个数m 少于开环极点个数n ,则有)(m n -条根轨迹终止于无穷远处。
根轨迹的起点、终点分别是指根轨迹增益0=*K 和∞→时的根轨迹点。
将幅值条件式(4-9)改写为∏∏∏∏==-==--=--=mi inj j mn m i i nj jsz sp sz s ps K 1111*|1||1||)(||)(|(4-11)可见当s=j p 时,0*=K ;当s=i z 时,∞→*K ;当|s|∞→且m n ≥时,∞→*K 。
法则2 根轨迹的分支数,对称性和连续性:根轨迹的分支数与开环零点数m 、开环极点数n 中的大者相等,根轨迹连续并且对称于实轴。
根轨迹是开环系统某一参数从零变到无穷时,闭环极点在s 平面上的变化轨迹。
因此,根轨迹的分支数必与闭环特征方程根的数目一致,即根轨迹分支数等于系统的阶数。
实际系统都存在惯性,反映在传递函数上必有m n ≥。
所以一般讲,根轨迹分支数就等于开环极点数。
实际系统的特征方程都是实系数方程,依代数定理特征根必为实数或共轭复数。
因此根轨迹必然对称于实轴。
由对称性,只须画出s 平面上半部和实轴上的根轨迹,下半部的根轨迹即可对称画出。
特征方程中的某些系数是根轨迹增益*K 的函数,*K 从零连续变到无穷时,特征方程的系数是连续变化的,因而特征根的变化也必然是连续的,故根轨迹具有连续性。
法则3 实轴上的根轨迹:实轴上的某一区域,若其右边开环实数零、极点个数之和为奇数,则该区域必是根轨迹。
设系统开环零、极点分布如图4-5 所示。
图中,0s 是实轴上的点,)3,2,1(=i i ϕ是各开环零点到0s 点向量的相角,)4,3,2,1(=j j θ是各开环极点到0s 点向量的相角。
第4章 根 轨 迹 法根轨迹的基本概念所谓根轨迹是指控制系统开环传递函数的某一参数从零变化到无穷时,闭环特征根在s 平面上移动的轨迹。
一般取开环增益为可变参数,但也可以用系统中的其他参数,如某个环节的时间常数等。
根轨迹的绘制法则gnj jmi iK ps z s s D s N 1)()()()(11-=++=∏∏== 在绘制根轨迹时,通常首先求出g K =0和g K =∞时的特征根,再根据绘制法则画出0<g K <∞时的根轨迹草图;一. 根轨迹的起点(K g =0)上式说明,当g K = 0时,系统的开环极点就是闭环极点。
绘制根轨迹时,我们通常是从g K = 0时的闭环极点画起,即开环极点是闭环根轨迹曲线的起点。
起点数n 就是根轨迹曲线的条数。
二. 根轨迹的终点(K g =∞)当g K =∞时,闭环特征方程式为∏==+=mi i z s s N 1)()(这就是说,系统的开环零点就是g K =∞时的闭环极点,即根轨迹曲线的终点。
其个数为m ,另外的n -m 个根轨迹终点在无穷远。
三. 根轨迹的分支数和对称性根轨迹在s 平面上的分支数(条数)等于开环特征方程的阶数n ,即与开环极点个数相同。
此外,在一般控制系统的特征方程中,各项系数都是实数。
因此,特征根或是实数,或是共扼复数,则根轨迹一定是对称于实轴。
四. 实轴上的根轨迹当开环传递函数有实数极点、零点时,这意味着实轴上有根轨迹的起点和终点。
这时,必须确定实轴上哪一区间有根轨迹,哪一区间没有根轨迹。
五. 根轨迹的分离点和会和点在有根轨迹的实轴上,存在着两个开环极点时,必然有一个分离点a 。
同样,在有根轨迹的实轴上,存在两个开环零点(包括无穷远零点)时,必然有一个会合点b 。
当g K 为g K a (a 点的g K 值)或g K b (b 点的g K 值)时,特征方程都将出现重根。
这是两者的共性。
此外,分离点a 的g K 值,是其实轴根轨迹上的最大g K 值;会合点b 的g K 值,是其实轴根轨迹上的最小g K 值。