第五章-控制系统根轨迹法
- 格式:ppt
- 大小:3.05 MB
- 文档页数:16
机械工程控制基础答案(第七版)第一章:控制系统的基本概念1.1 什么是控制系统?控制系统是由各种组件和部件组成的工程系统,它们通过传递信号和信息来控制和调节系统的运行状态。
1.2 控制系统的分类控制系统可以根据输入和输出信号的性质分为连续时间控制系统和离散时间控制系统。
1.3 控制系统的组成控制系统主要由输入部分、执行部分和输出部分组成。
输入部分负责接收输入信号,执行部分负责根据输入信号执行相应的操作,输出部分负责输出结果。
1.4 控制系统的闭环与开环闭环控制系统是指系统的输出信号可以作为输入信号的一部分进行反馈控制,而开环控制系统是指系统的输出信号不会作为输入信号的一部分进行反馈控制。
1.5 控制系统的性能指标控制系统的性能指标包括稳定性、快速性、准确性和鲁棒性等。
第二章:传输函数与信号流图2.1 传输函数的定义传输函数描述了控制系统中输入和输出之间的关系。
它可以通过系统的微分方程和拉普拉斯变换来求得。
2.2 传输函数的性质传输函数具有线性、时不变和因果性等性质。
2.3 信号流图的表示信号流图是用于描述控制系统的一种图形表示方法,它由节点和支路组成。
节点表示系统的状态,支路表示信号的传递。
2.4 信号流图的简化信号流图可以通过串联、并联、反馈和转移等操作进行简化和求解。
第三章:经典控制系统设计3.1 一阶惯性环节的控制系统设计一阶惯性环节的控制系统设计主要包括根轨迹法和频率响应法。
根轨迹法通过绘制根轨迹来设计控制系统的参数,频率响应法通过频率特性来设计控制系统的参数。
3.2 二阶惯性环节的控制系统设计二阶惯性环节的控制系统设计主要包括模拟法和频率法。
模拟法通过模拟计算来设计控制系统的参数,频率法通过频率特性来设计控制系统的参数。
3.3 控制系统的稳定性分析与设计控制系统的稳定性是指系统在受到干扰时能够保持稳定的状态。
稳定性分析和设计是控制系统设计中的重要内容。
3.4 控制系统的性能分析与设计控制系统的性能包括快速性、准确性和鲁棒性等方面。
自动控制原理孙优贤教材第一章:控制系统组成和概念控制系统是一种由多个元素和过程组成的整体,它的主要目的是通过调节输入和输出之间的关系,以达到特定的性能指标。
控制系统一般包括控制器、执行器、传感器和被控对象等组成部分。
第二章:控制系统的数学模型控制系统的数学模型是用数学语言描述控制系统的方法,它可以帮助我们分析控制系统的性能和行为。
常用的数学模型包括传递函数模型、状态空间模型和Laplace变换模型等。
这些模型可以用来描述控制系统的动态特性,进行系统分析和设计。
第三章:控制系统的时域分析时域分析法是一种基于时间域的控制系统分析方法。
通过时域分析,可以了解控制系统的稳定性、响应速度、误差等性能指标,进而对系统进行优化设计。
第四章:频率特性分析法频率特性分析法是一种基于频率域的控制系统分析方法。
通过频率特性分析,可以了解控制系统的频率响应、相位和幅值等特性,进而对系统进行优化设计。
第五章:根轨迹分析方法根轨迹分析法是一种基于根轨迹的控制系统分析方法。
通过根轨迹分析,可以了解控制系统的稳定性、响应速度和阻尼比等性能指标,进而对系统进行优化设计。
第六章:采样控制系统采样控制系统是一种数字控制系统,它通过对模拟信号进行采样、量化、编码等处理,将其转化为数字信号进行控制。
采样控制系统的精度高、稳定性好、易于实现远程控制等优点,被广泛应用于工业自动化等领域。
第七章:状态空间方法状态空间法是一种基于状态空间模型的控制系统分析方法。
通过状态空间法,可以了解控制系统的动态特性和状态变量之间的关系,进而对系统进行优化设计。
状态空间法还可以用于控制系统的稳定性和鲁棒性分析等方面。
第八章:非线性系统分析非线性系统是指系统的输入和输出之间存在非线性关系的系统。
非线性系统的分析和设计比线性系统更为复杂,但非线性系统的应用范围更广泛。
非线性系统的分析方法包括相平面法、描述函数法等。
Automatic Control Theory自动控制理论第四章 线性系统的根轨迹法根轨迹法是一种图解方法,它是经典控制理论中对系统进行分析和综合的基本方法之一。
由于根轨迹图直观地描述了系统特征方程的根(即系统的闭环极点)在s 平面上的分布,因此,用根轨迹法分析自动控制系统十分方便,特别是对于高阶系统和多回路系统,应用根轨迹法比用其他方法更为方便,因此在工程实践中获得了广泛应用。
1、根轨迹的基本概念闭环系统的稳定性取决于闭环系统的极点分布,其它性能取决于其零极点分布。
因此,可以用系统的零极点分布来间接研究控制系统的性能。
伊万思在1948年提出了一种在复平面上由开环零极点确定闭环零极点的图解方法——根轨迹法。
将开环系统的某一个参数(比如开环放大系数)的全部值与闭环特征根的关系表示在一张图上。
根轨迹定义开环系统传递函数的某一个参数从零变到无穷时,闭环系统特征方程的根在复平面上变化的轨迹。
研究根轨迹的目的:分析系统的各种性能(稳定性、动态和稳态性能) 相关术语:*01210121()()()()()()()()()()mim i nn jj s z b s z s z s z G s H s K a s p s p s p s p ==----==----∏∏❖ 开环零点:指系统开环传递函数中分子多项式方程的根 ❖ 开环极点:指系统开环传递函数中分母多项式方程的根 ❖ 根轨迹增益:K *为开环系统根轨迹增益❖ 闭环零点:指系统闭环传递函数中分子多项式方程的根 ❖闭环极点:指系统闭环传递函数中分母多项式方程的根1*11()()()()1()()()()nj j n mjij i G s s p G s s G s H s s p K s z ===-Φ==+-+-∏∏∏闭环零点由前向通道的零点和反馈通道的极点构成。
对于单位反馈系统,闭环零点就是开环零点。
闭环极点与开环零、极点以及根轨迹增益K*均有关。
自动控制原理 (胡寿松著) 科学出版社课后答案《自动控制原理》是胡寿松编著的一本关于自动控制原理的教材。
本书系统地介绍了自动控制的基本原理、方法和技术,适用于自动化、电气、机械等相关专业的本科生和研究生学习使用。
本书一共分为十一章,包括控制系统基础、传递函数与系统的时域特性、系统的频域特性、稳定性分析、根轨迹法、频率响应法、校正器设计、状态空间法、观测器设计、控制系统设计以及非线性系统控制等内容。
每一章都有相应的习题,用于检测学生对所学知识的掌握情况。
第一章:控制系统基础1. 控制系统的定义和分类。
控制系统是指通过对被控对象进行测量和判断,从而对被控对象进行控制的一种系统。
根据被控对象的特性和控制方式的不同,控制系统可以分为连续控制系统和离散控制系统。
2. 控制系统的基本组成。
控制系统由被控对象、测量元件、判断元件、执行元件和反馈元件组成。
3. 控制系统的基本特性。
控制系统的基本特性包括稳定性、灵敏度、精度和动态性能等。
第二章:传递函数与系统的时域特性1. 传递函数的定义和性质。
传递函数是描述控制系统输入和输出之间关系的函数。
传递函数具有线性性、时不变性和因果性等性质。
2. 系统的时域特性。
系统的时域特性包括阶跃响应、冲击响应和频率响应等。
第三章:系统的频域特性1. 频域特性的概念。
频域特性是指系统对不同频率的输入信号的响应情况。
2. 振荡特性的判据。
系统振荡的判据是极点的实部为零和虚部不为零。
第四章:稳定性分析1. 稳定性的定义。
稳定性是指系统在无穷远时间内对于有限输入的响应趋于有限。
2. 稳定性的判据。
稳定性的判据包括判别函数法、根轨迹法和Nyquist稳定判据等。
第五章:根轨迹法1. 根轨迹的概念和性质。
根轨迹是描述传递函数极点随参数变化而运动轨迹的图形。
2. 根轨迹的绘制方法。
根轨迹的绘制方法包括定性法和定量法。
第六章:频率响应法1. 频率响应的概念和性质。
频率响应是指系统对不同频率的输入信号的响应情况。
第五章§5-1 引言§5-2频率特性§5-3 开环系统的典型环节分解和开环频率特性曲线的绘制§5-4开环和闭环系统Bode图的绘制方法§5-5 系统稳定性分析§5-6控制系统的相对稳定性分析第五章 控制系统的频率响应分析[教学目的]:掌握利用频域法进行系统分析的一般方法 ,为后面的校正及信号与系统分析打下基础。
掌握系统频率特性分析与系统幅角之间的关系,掌握Nyquist 图和Bode 图的绘制方法,根据系统的Nyquist 图和Bode 图分析系统的性质。
本章的难点是Nyquist 稳定性分析。
[主要容]:一、引言 二、 频率特性 三、 开环系统的典型环节分解和开环频率特性曲线的绘制 四、 频率域稳定判据 五、 稳定裕度 六、 闭环系统的频域性能指标[重点]: 频率特性的基本概念,各种频域特性曲线的绘制,Nyquist 稳定判据的应用,及相对稳定裕度的分析,理解三频段的概念与作用。
[难点]:时域性能指标与频域性能指标之间的相互转换。
闭环频域性能指标的理解与应用[讲授方法及技巧]:联系传递函数,微分方程等数学模型,将频率法和时域分析法、根轨迹法相比较,理解和掌握古典控制系统的完整体系。
准确理解概念,把握各种图形表示法的相互联系。
与时域法进行对比,以加深理解。
§5-1 引言1.时域分析法(特点)1)以传递函数和单位阶跃响应为分析基础构成的一整套解析法为主响应曲线图形分析法为辅的分析方法。
它具有直观、明确的物理意义,但就是运算工作量较大,参数的全局特征不明显。
2) 原始依据--数学模型,得来不易,也同实际系统得真实情况有差异,存在较多的近似、假设和忽略,有时对于未知对象,还可能要用经验法估计。
3) 对工程中普遍存在的高频噪声干扰的研究无能为力。
4) 在定性分析上存在明显的不足。
5) 属于以“点”为工作方式的分析方法。
2.根轨迹法(特点)1)根轨迹法弥补了时域分析法中参数全局变化时特征不明显的不足,在研究单一指定参数对整个系统的影响时很有用;2)增加零极点(增加补偿器)时,是一种很好的辅助设计工具; 3)以“线”和“面”为工作方式;4)为定性分析提供了一种非常好的想象空间和辅助思维界面。
第五章 根轨迹分析方法 自测题__参考答案5-1 设闭环系统的开环传递函数为2(5)()0(48)K s G s K s s s +=>++,请用相位条件检验下列S 平面上的点是不是根轨迹上的点,如果是根轨迹上的点,则用幅值条件计算该点所对应的K 值。
(1)(-1,j0);(2)(-1.5,j2);(3)(-6,j0);(4)(-4,j3);(5)(-3,j2.37)解: (1)是; K =5/4(2)是; K =5/4(3)不是根轨迹上的点。
(4)不是根轨迹上的点。
(5)是; K =7。
5-2 单位负反馈系统的开环传递函数为:()0(1)KG s K s Ts =>+,,若希望闭环系统所有特征根实部均小于-2,请绘制根轨迹草图确定T 的取值范围。
若再要求系统阻尼比ζ不小于0.5,请画出期望的特征根在S 平面上的分布范围。
解:分离点的位置是: 0<T<1/45-3 控制系统结构如图5-3所示,试由根轨迹的方法确定使闭环系统稳定的KK t 的取值范围。
解:系统开环传递函数为:()(0.251)t KG s s s KK =-+有2个开环极点:120, 4(1)t s s KK ==-由于K>0,故欲保证闭环系统稳定,只需要2个开环极点均位于S 左半平面即可 故101t t KK KK -<⇒>R (s )s )图5-3 控制系统示意图即只要满足条件 1t KK >。
5-4 单位负反馈系统的开环传递函数为:123()()()()()K s z G s s p s p s p +=+++其零、极点分布如图5-4所示,试采用根轨迹方法确定使系统稳定的K 的范围。
解:可以绘制根轨迹的概略图。
从+1、-1出发的2条根轨迹相向而行,在分离点离开实轴进入复域。
由已知的零极点分布容易判断,分离点一定是在左半平面。
渐近线与实轴的交点:-0.5,为平行于虚轴的垂直线容易看出,当一个极点从s=1出发,往S 左半平面移动,过原点为系统稳定与否的分界点。